Blu-ray beyond music and movies—novel approach to diagnostics measuring specific extracellular vesicles

2018 ◽  
Vol 3 ◽  
pp. 84-84
Author(s):  
Søren Risom Kristensen ◽  
Jaco Botha ◽  
Aase Handberg
2018 ◽  
Vol 7 (10) ◽  
pp. 357 ◽  
Author(s):  
Bruna Codispoti ◽  
Massimo Marrelli ◽  
Francesco Paduano ◽  
Marco Tatullo

Mesenchymal stem cells (MSCs) are well known for their great potential in clinical applications. In fact, MSCs can differentiate into several cell lineages and show paracrine behavior by releasing endogenous factors that stimulate tissue repair and modulate local immune response. Each MSC type is affected by specific biobanking issues—technical issues as well as regulatory and ethical concerns—thus making it quite tricky to safely and commonly use MSC banking for swift regenerative applications. Extracellular vesicles (EVs) include a group of 150–1000 nm vesicles that are released by budding from the plasma membrane into biological fluids and/or in the culture medium from varied and heterogenic cell types. EVs consist of various vesicle types that are defined with different nomenclature such as exosomes, shedding vesicles, nanoparticles, microvesicles and apoptotic bodies. Ectosomes, micro- and nanoparticles generally refer to the direct release of single vesicles from the plasma membrane. While many studies describe exosomes as deriving from multivesicular bodies, solid evidence about the origin of EVs is often lacking. Extracellular vesicles represent an important portion of the cell secretome. Their numerous properties can be used for diagnostic, prognostic, and therapeutic uses, so EVs are considered to be innovative and smart theranostic tools. The aim of this review is to investigate the usefulness of exosomes as carriers of the whole information panel characterizing the use of MSCs in regenerative medicine. Our purpose is to make a step forward in the development of the NANOmetric BIO-banked MSC-derived Exosome (NANOBIOME).


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0162417 ◽  
Author(s):  
Sara Gallo ◽  
Maddalena Gili ◽  
Giusy Lombardo ◽  
Alberto Rossetti ◽  
Arturo Rosso ◽  
...  

2018 ◽  
Author(s):  
Yong Cheng ◽  
Jeffery S. Schorey

AbstractExtracellular vesicles (EVs) have been shown to carry microbial components and function in the host defense against infections. In this study, we demonstrate that Mycobacterium tuberculosis (M.tb) RNA is delivered into macrophage-derived EVs through an M.tb SecA2-dependent pathway, and that EVs released from M.tb-infected macrophages stimulate a host RIG-I/MAVS/TBK1/IRF3 RNA sensing pathway, leading to type I interferon production in recipient cells. These EVs also promote, in a RIG-I/MAVS-dependent manner, the maturation of M.tb-containing phagosomes through a noncanonical LC3 modification, leading to increased bacterial killing. Moreover, treatment of M.tb-infected macrophages or mice with a combination of moxifloxacin and EVs, isolated from M.tb-infected macrophages, significantly lowered bacterial burden relative to either treatment alone. We propose that EVs, which are preferentially removed by macrophages in vivo, may be developed in combination with effective antibiotics as a novel approach to treat drug-resistant TB.


2018 ◽  
Vol 234 (6) ◽  
pp. 8455-8464 ◽  
Author(s):  
Behnaz Taheri ◽  
Masoud Soleimani ◽  
Sedigheh Fekri Aval ◽  
Elaheh Esmaeili ◽  
Zahra Bazi ◽  
...  

2019 ◽  
Author(s):  
Javier Mariscal ◽  
Tatyana Vagner ◽  
Minhyung Kim ◽  
Bo Zhou ◽  
Andrew Chin ◽  
...  

AbstractExtracellular vesicles (EVs) are membrane-enclosed particles that play an important role in cancer progression and have emerged as a promising source of circulating biomarkers. Protein S-acylation, also known as palmitoylation, has been proposed as a post-translational mechanism that modulates the dynamics of EV biogenesis and protein cargo sorting. However, technical challenges have limited large-scale profiling of the whole palmitoyl-proteins of EVs. We successfully employed a novel approach that combines low-background acyl-biotinyl exchange (LB-ABE) with label-free proteomics to analyze the palmitoyl proteome of large EVs (L-EVs) and small EVs (S-EVs) from prostate cancer cells. Here we report the first palmitoyl-protein signature of EVs, and demonstrate that L- and S-EVs harbor proteins associated with distinct biological processes and subcellular origin. We identified STEAP1, STEAP2, and ABBC4 as prostate cancer-specific palmitoyl proteins enriched in both EV populations in comparison with the originating cell lines. Importantly, the presence of the above proteins in EVs was significantly reduced upon inhibition of palmitoylation in the producing cells. These results suggest that palmitoylation may be involved in the differential sorting of proteins to distinct EV populations and allow for better detection of disease biomarkers.


Author(s):  
Thomas Kruse ◽  
Samuel Schneider ◽  
Lucas Nik Reger ◽  
Markus Kampmann ◽  
Oscar‐Werner Reif

Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1038 ◽  
Author(s):  
Jose Alberto Molina-Tijeras ◽  
Julio Gálvez ◽  
Maria Elena Rodríguez-Cabezas

Probiotics, included in functional foods, nutritional supplements, or nutraceuticals, exhibit different beneficial effects on gut function. They are extensively used to improve the digestive processes as well as reduce the symptoms and progression of different diseases. Probiotics have shown to improve dysbiosis and modulate the immune response of the host by interacting with different cell types. Probiotics and the host can interact in a direct way, but it is becoming apparent that communication occurs also through extracellular vesicles (EVs) derived from probiotics. EVs are key for bacteria–bacteria and bacteria–host interactions, since they carry a wide variety of components that can modulate different signaling pathways, including those involved in the immune response. Interestingly, EVs are recently starting to be considered as an alternative to probiotics in those cases for which the use of live bacteria could be dangerous, such as immunocompromised individuals or situations where the intestinal barrier is impaired. EVs can spread through the mucus layer and interact with the host, avoiding the risk of sepsis. This review summarizes the existing knowledge about EVs from different probiotic strains, their properties, and their potential use for the prevention or treatment of different gastrointestinal diseases.


2016 ◽  
Vol 310 (8) ◽  
pp. F796-F801 ◽  
Author(s):  
Mahdi Salih ◽  
Robert A. Fenton ◽  
Jeroen Knipscheer ◽  
Joost W. Janssen ◽  
Mirella S. Vredenbregt-van den Berg ◽  
...  

Although nanosized urinary extracellular vesicles (uEVs) are increasingly used for biomarker discovery, their isolation currently relies on time-consuming techniques hindering high-throughput application. To navigate this problem, we designed an immunoassay to isolate, quantify, and normalize uEV proteins. The uEV immunoassay consists of a biotinylated CD9 antibody to isolate uEVs, an antibody against the protein of interest, and two conjugated antibodies to quantify the protein of interest and CD9. As a proof of principle, the immunoassay was developed to analyze the water channel aquaporin-2 (AQP2) and the sodium-chloride cotransporter (NCC). CD9 was used as a capture antibody because immunoprecipitation showed that anti-CD9 antibody, but not anti-CD63 antibody, isolated AQP2 and NCC. CD9 correlated strongly with urine creatinine, allowing CD9 to be used for normalization of spot urines. The uEV immunoassay detected AQP2 and NCC with high sensitivity, low coefficients of variance, and stability in dilution series. After water loading in healthy subjects, the uEV immunoassay detected decreases in AQP2 and NCC equally well as the traditional method using ultracentrifugation and immunoblot. The uEV immunoassay also reliably detected lower and higher AQP2 or NCC levels in uEVs from patients with pathological water or salt reabsorption, respectively. In summary, we report a novel approach to analyze uEVs that circumvents existing isolation and normalization issues, requires small volumes of urine, and detects anticipated changes in physiological responses and clinical disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Geng Lu ◽  
XinRui Jiang ◽  
Anni Wu ◽  
Jiawei Zhou ◽  
Hengjun Liu ◽  
...  

The rapid diagnosis of tuberculosis (TB) is of great significance for the control and treatment of TB. However, TB remains a major healthy, social, and economic burden worldwide because of the lack of ideal diagnostic biomarkers. Mycobacterium tuberculosis (M. tuberculosis)-encoded small RNA (sRNA) is a class of regulation small RNA. Several studies have identified M. tuberculosis encoded-sRNAs in the serum/plasm of M. tuberculosis-infected patients. Small extracellular vesicles are small membrane vesicles secreted by many cell types during physiological and pathological conditions. Recent evidence has indicated that most of the nucleic acids in the serum/plasma are packaged in the small extracellular vesicles and could serve as ideal diagnostic biomarkers. In this study, we attempted a novel approach for TB diagnosis: targeting small extracellular vesicles M. tuberculosis encoded sRNA (sRNA) by qRT-PCR. The results showed that M. tuberculosis-encoded ASdes and MTB-miR5 only existed in tuberculosis patients and have the potential to serve as a sensitive and accurate methodology for TB diagnosis.


Sign in / Sign up

Export Citation Format

Share Document