scholarly journals NANOmetric BIO-Banked MSC-Derived Exosome (NANOBIOME) as a Novel Approach to Regenerative Medicine

2018 ◽  
Vol 7 (10) ◽  
pp. 357 ◽  
Author(s):  
Bruna Codispoti ◽  
Massimo Marrelli ◽  
Francesco Paduano ◽  
Marco Tatullo

Mesenchymal stem cells (MSCs) are well known for their great potential in clinical applications. In fact, MSCs can differentiate into several cell lineages and show paracrine behavior by releasing endogenous factors that stimulate tissue repair and modulate local immune response. Each MSC type is affected by specific biobanking issues—technical issues as well as regulatory and ethical concerns—thus making it quite tricky to safely and commonly use MSC banking for swift regenerative applications. Extracellular vesicles (EVs) include a group of 150–1000 nm vesicles that are released by budding from the plasma membrane into biological fluids and/or in the culture medium from varied and heterogenic cell types. EVs consist of various vesicle types that are defined with different nomenclature such as exosomes, shedding vesicles, nanoparticles, microvesicles and apoptotic bodies. Ectosomes, micro- and nanoparticles generally refer to the direct release of single vesicles from the plasma membrane. While many studies describe exosomes as deriving from multivesicular bodies, solid evidence about the origin of EVs is often lacking. Extracellular vesicles represent an important portion of the cell secretome. Their numerous properties can be used for diagnostic, prognostic, and therapeutic uses, so EVs are considered to be innovative and smart theranostic tools. The aim of this review is to investigate the usefulness of exosomes as carriers of the whole information panel characterizing the use of MSCs in regenerative medicine. Our purpose is to make a step forward in the development of the NANOmetric BIO-banked MSC-derived Exosome (NANOBIOME).

2021 ◽  
Vol 28 ◽  
Author(s):  
Marianna Lucafò ◽  
Serena De Biasi ◽  
Debora Curci ◽  
Alessia Norbedo ◽  
Gabriele Stocco ◽  
...  

Background: Extracellular vesicles (EVs) are a heterogeneous family of small vesicles released by donor cells and absorbed by recipient cells, which represent important mediators with fundamental roles in both physiological and pathological conditions. EVs are present in a large variety of biological fluids and have a great diagnostic and prognostic value. They have gained the interest of the scientific community due to their extreme versatility. In fact, they allow us to hypothesize new therapeutic strategies since, in addition to being cell signal mediators, they play an important role as biomarkers, drug vehicles, and potential new therapeutic agents. They are also involved in immunoregulation, have the ability to transmit resistance to a drug from one cell to a more sensitive one, and can act as drug delivery systems. Objective: The main reciprocal interactions between EVs and immunosuppressive drugs will be presented. Results: The known interactions between EVs and immunosuppressive drugs, in particular, cyclosporin, glucocorticoids, rapamycin, methotrexate, cyclophosphamide, eculizumab, infliximab, certolizumab, etanercept, glatiramer acetate, and fingolimod are presented. Conclusion: This review provides relevant information on the links between EVs and immunosuppressive drugs with a focus on EVs' role as tools to assess effects of immunosuppressants, suggesting innovative properties and new possible therapeutic uses.


2019 ◽  
Vol 317 (5) ◽  
pp. G739-G749 ◽  
Author(s):  
Harmeet Malhi

Extracellular vesicles (EVs) are membrane-defined nanoparticles released by most cell types. The EVs released by cells may differ quantitatively and qualitatively from physiological states to disease states. There are several unique properties of EVs, including their proteins, lipids and nucleic acid cargoes, stability in circulation, and presence in biofluids, which make them a critical vector for cell-to-cell communication and impart utility as a biomarker. EVs may also serve as a vehicle for selective cargo secretion. Similarly, EV cargo may be selectively manipulated for targeted therapeutic delivery. In this review an overview is provided on the EV classification, biogenesis, and secretion pathways, which are conserved across cell types. Next, cargo characterization and effector cell responses are discussed in the context of nonalcoholic steatohepatitis, alcoholic hepatitis, and acetaminophen-induced liver injury. The review also discusses the potential biomarker and therapeutic uses of circulating EVs.


2005 ◽  
Vol 16 (8) ◽  
pp. 3659-3665 ◽  
Author(s):  
Patrizia Pellegatti ◽  
Simonetta Falzoni ◽  
Paolo Pinton ◽  
Rosario Rizzuto ◽  
Francesco Di Virgilio

ATP is emerging as an ubiquitous extracellular messenger. However, measurement of ATP concentrations in the pericellular space is problematic. To this aim, we have engineered a firefly luciferase-folate receptor chimeric protein that retains the N-terminal leader sequence and the C-terminal GPI anchor of the folate receptor. This chimeric protein, named plasma membrane luciferase (pmeLUC), is targeted and localized to the outer aspect of the plasma membrane. PmeLUC is sensitive to ATP in the low micromolar to millimolar level and is insensitive to all other nucleotides. To identify pathways for nonlytic ATP release, we transfected pmeLUC into cells expressing the recombinant or native P2X7 receptor (P2X7R). Both cell types release large amounts of ATP (100–200 μM) in response to P2X7R activation. This novel approach unveils a hitherto unsuspected nonlytic pathway for the release of large amounts of ATP that might contribute to spreading activation and recruitment of immune cells at inflammatory sites.


2021 ◽  
Author(s):  
Nan He ◽  
Sirisha Thippabhotla ◽  
Cuncong Zhong ◽  
Zachary Greenberg ◽  
Liang Xu ◽  
...  

AbstractExtracellular vesicles (EVs), particularly exosomes, are emerging biomarker sources. However, due to heterogeneous populations secreted from diverse cell types, mapping EV multi-omic molecular information specifically to their pathogenesis origin for cancer biomarker identification is still extraordinary challenging. Herein, we introduced a novel 3D-structured nanographene immunomagnetic particles (NanoPoms) with unique flower pom-poms morphology and photo-click chemistry for specific marker-defined capture and release of intact small EVs. This specific EV isolation approach leads to the expanded identification of targetable cancer biomarkers with enhanced specificity and sensitivity, as demonstrated by multi-omic EV analysis of bladder cancer patient tissue fluids using the next generation sequencing of somatic DNA mutations, miRNAs, and the global proteome. The NanoPoms prepared sEVs also exhibit distinctive in vivo biodistribution patterns, highlighting the highly viable and integral quality. The developed method is simple and straightforward, and is applicable to nearly all types of biological fluids and amenable for scale up and high-throughput EV isolation.


2018 ◽  
Vol 234 (6) ◽  
pp. 8455-8464 ◽  
Author(s):  
Behnaz Taheri ◽  
Masoud Soleimani ◽  
Sedigheh Fekri Aval ◽  
Elaheh Esmaeili ◽  
Zahra Bazi ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ewa Ł. Stępień ◽  
Carina Rząca ◽  
Paweł Moskal

Abstract Extracellular vesicles (EVs) are nano- and micro-sized double-layered membrane entities derived from most cell types and released into biological fluids. Biological properties (cell-uptake, biocompatibility), and chemical (composition, structure) or physical (size, density) characteristics make EVs a good candidate for drug delivery systems (DDS). Recent advances in the field of EVs (e.g., scaling-up production, purification) and developments of new imaging methods (total-body positron emission tomography [PET]) revealed benefits of radiolabeled EVs in diagnostic and interventional medicine as a potential DDs in theranostics.


2013 ◽  
Vol 1 (1) ◽  
Author(s):  
Zacharias E. Suntres ◽  
Milton G. Smith ◽  
Fatemeh Momen-Heravi ◽  
Jie Hu ◽  
Xin Zhang ◽  
...  

Exosomes are membrane vesicles with a diameter of 40–100 nm that are secreted by many cell types into the extracellular milieu. Exosomes are found in cell culture supernatants and in different biological fluids and are known to be secreted by most cell types under normal and pathological conditions. Considerable research is focusing on the exploitation of exosomes in biological fluids for biomarkers in the diagnosis of disease. More recently, exosomes are being exploited for their therapeutic potential. Exosomes derived from dendritic cells, tumor cells, and malignant effusions demonstrate immunomodulatory functions and are able to present antigens to T-cells and stimulate antigen-specific T-cell responses. Exosomes have also been examined for their therapeutic potential in the treatment of infections such as toxoplasmosis, diphtheria, tuberculosis and atypical severe acute respiratory syndrome as well as autoimmune diseases. Attempts to find practical applications for exosomes continue to expand with the role of exosomes as a drug delivery system for the treatment of autoimmune/inflammatory diseases and cancers.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1038 ◽  
Author(s):  
Jose Alberto Molina-Tijeras ◽  
Julio Gálvez ◽  
Maria Elena Rodríguez-Cabezas

Probiotics, included in functional foods, nutritional supplements, or nutraceuticals, exhibit different beneficial effects on gut function. They are extensively used to improve the digestive processes as well as reduce the symptoms and progression of different diseases. Probiotics have shown to improve dysbiosis and modulate the immune response of the host by interacting with different cell types. Probiotics and the host can interact in a direct way, but it is becoming apparent that communication occurs also through extracellular vesicles (EVs) derived from probiotics. EVs are key for bacteria–bacteria and bacteria–host interactions, since they carry a wide variety of components that can modulate different signaling pathways, including those involved in the immune response. Interestingly, EVs are recently starting to be considered as an alternative to probiotics in those cases for which the use of live bacteria could be dangerous, such as immunocompromised individuals or situations where the intestinal barrier is impaired. EVs can spread through the mucus layer and interact with the host, avoiding the risk of sepsis. This review summarizes the existing knowledge about EVs from different probiotic strains, their properties, and their potential use for the prevention or treatment of different gastrointestinal diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Geng Lu ◽  
XinRui Jiang ◽  
Anni Wu ◽  
Jiawei Zhou ◽  
Hengjun Liu ◽  
...  

The rapid diagnosis of tuberculosis (TB) is of great significance for the control and treatment of TB. However, TB remains a major healthy, social, and economic burden worldwide because of the lack of ideal diagnostic biomarkers. Mycobacterium tuberculosis (M. tuberculosis)-encoded small RNA (sRNA) is a class of regulation small RNA. Several studies have identified M. tuberculosis encoded-sRNAs in the serum/plasm of M. tuberculosis-infected patients. Small extracellular vesicles are small membrane vesicles secreted by many cell types during physiological and pathological conditions. Recent evidence has indicated that most of the nucleic acids in the serum/plasma are packaged in the small extracellular vesicles and could serve as ideal diagnostic biomarkers. In this study, we attempted a novel approach for TB diagnosis: targeting small extracellular vesicles M. tuberculosis encoded sRNA (sRNA) by qRT-PCR. The results showed that M. tuberculosis-encoded ASdes and MTB-miR5 only existed in tuberculosis patients and have the potential to serve as a sensitive and accurate methodology for TB diagnosis.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Hugo Abreu ◽  
Elena Canciani ◽  
Davide Raineri ◽  
Giuseppe Cappellano ◽  
Lia Rimondini ◽  
...  

Tissue regeneration is a hot topic in health sciences, particularly because effective therapies promoting the healing of several cell types are lacking, specifically those of the musculoskeletal system. Mesenchymal Stem/Stromal Cells (MSCs) have been identified as crucial players in bone homeostasis, and are considered a promising therapy for diseases such as osteoarthritis (OA) and Rheumatoid Arthritis (RA). However, some known drawbacks limit their use, particularly ethical issues and immunological rejections. Thus, MSCs byproducts, namely Extracellular Vesicles (EVs), are emerging as potential solutions to overcome some of the issues of the original cells. EVs can be modulated by either cellular preconditioning or vesicle engineering, and thus represent a plastic tool to be implemented in regenerative medicine. Further, the use of biomaterials is important to improve EV delivery and indirectly to modulate their content and secretion. This review aims to connect the dots among MSCs, EVs, and biomaterials, in the context of musculoskeletal diseases.


Sign in / Sign up

Export Citation Format

Share Document