scholarly journals Optimasi Parameter Pemesinan dengan Proses Bubut pada Respon Kekasaran dan Kekerasan Permukaan Material S45-C Menggunakan Metode Taguchi - Grey - Fuzzy

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Firman Yasa Utama ◽  
Tri Hartutuk Ningsih

Turning is a widely used machining process in which a single-point cutting tool removes material from the surface of a rotating cylindrical work piece..Process efficiency increase  significantly can be obtained by optimizing the process parameters, namely spindle rotation (n), feed rate (f) and depth of cut (a). In this research will optimize the surface roughness and hardness  simultaneously using a combination of turning process parameters. The research was conducted on the material S45-C.Taguchi method is used, which is a combination of fuzzy logic and Taguchi method. Matlab software that has Matlab fuzzy toolbox aided fuzzy logic process. Design experiment using orthogonal array L9 (33) varying the three parameters which each parameters has three levels. Experiment design of L9 orthogonal array varied factor or cutting parameters such as spindle rotation (n), feed rate (f) and depth of cut (a). Since noise factors are excluded from the experimental design, the experiments were conducted with replication. Optimization was done by using grey-fuzzy Taguchi method. The results of the optimization process is a combination of parameters that result in an optimal response. Based on a combination of these parameters will be carried out confirmation test. Confirmation test was done to match the prediction results with the actual response.The results showed a combination of turning process parameters of S45-C that can generate the optimal response is spindle rotation (n)605 Rpm, feed rate (f) of 0,031 mm/minand depth of cut (a) of0,125 mm.

Author(s):  
C. Divya ◽  
L. Suvarna Raju ◽  
B. Singaravel

Turning process is a primary process in engineering industries and optimization of process parameters enhance the machining performance. Inconel 718 is a nickel-based superalloy, widely found applications in the manufacturing of blades, sheets and discs in aircraft engines and rocket engines. It provides toughness at low temperature, with stand high mechanical stresses at elevated temperature and creep resistance. In this work, turning process is carried out on Inconel 718 with micro whole textured cutting inserts filled with solid lubricants. Three different solid lubricants are used namely molybdenum-di-sulfide (MoS2), tungsten-di-sulfide (WS2) and calcium-di-fluoride (CaF2). Experiments are performed as per L9 orthogonal array. Statistical approaches such as orthogonal array, Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA) are used to find the importance and effects of machining parameters. In this study, input parameters included are feed, cutting speed and depth of cut and output parameter includes surface roughness. Optimization of process parameters is carried out and the significance is estimated. The result suggested that WS2 followed by MoS2 and CaF2 given good surface finish value. Also, solid lubricant in machining enhances the sustainability in manufacturing.


This research is a study of the turning process by testing with brass material. There are three control factors: spindle of speed, feed rate, and depth of cut respectively. The turning process requires variable control,affect the quality of production productivity and production costplanning an experiment with the Taguchi Method help in theexperiment the analysis of variance, orthogonal array, and signal and noise ratios were considered as an experiment and survey of brass turning characteristics to determine the lowest material removal rate.The results obtained from the experiment were used to repeat the experiment for confirmation. This requires the turning process to be reliable and optimized


2014 ◽  
Vol 592-594 ◽  
pp. 668-672
Author(s):  
Praveen Kumar ◽  
Hari Singh

The objective of the paper is to obtain an optimal setting of turning process parameters (cutting speed, depth of cut and feed rate) resulting in an optimal value of the feed force when machining En19 steel with tungsten carbide cutting tool inserts. The effects of the selected turning process parameters on feed force and the subsequent optimal settings of the parameters have been accomplished using Taguchi’s parameter design approach. It was indicated by the results that the selected turning process parameters significantly affect the selected machining characteristic. The percent contributions of parameters as quantified in the S/N ANOVA envisage that the relative power of cutting speed (72.09 %) in controlling variation and mean feed force is significantly higher than that of the depth of cut (22.30 %) and feed rate (05.31 %). The predicted optimum feed force is 98.067 N. The results have been validated by the confirmation experiments.


2014 ◽  
Vol 984-985 ◽  
pp. 291-296
Author(s):  
S.D. Saravanan ◽  
S. Sendhil Kumar

In the present work, Taguchi method was employed to optimize tensile strength and hardness of the stir casted Al/RHA composite. The composites were prepared by varying stir casting parameters like stirring time (6, 9, 12 min), stirring speed (100,200,300 r.pm), and weight percentage of RHA reinforcement (6, 9, 12 %). All the experiments were conducted based on plan of experiments (L9 Orthogonal array) generated through Taguchi Technique. The individual influence of each process parameters on the hardness and tensile strength was determined by using analysis of variance. The result implies that the wt. % of RHA reinforcement was found to be a highly influenced parameter followed by stirring time and stirring speed. Finally, confirmation test was done to verify predictive model with the experimental results.


2016 ◽  
Vol 852 ◽  
pp. 255-259 ◽  
Author(s):  
B. Singaravel ◽  
Chimmalagi Marulaswami ◽  
Thangiah Selvaraj

Turning is one of the fundamental machining operations and its process parameters leads to better machining performance. The economic benefit of turning operation is providing components with appropriate dimensional accuracy. In this work, the effects of process parameters on dimensional accuracy (circularity and cylindricity) parameters are analyzed in turning of EN25 steel. The process parameters considered are cutting speed, feed rate and depth of cut in order to minimize circularity and cylindricity. The result revealed that the minimum dimensional accuracy error values such as circularity and cylindricity are obtained in the combination of higher value of cutting speed and lower value of feed rate and depth of cut. This analysis is used to meet the machined work piece within the tolerance limit and improve the quality criteria.


2016 ◽  
Vol 693 ◽  
pp. 1009-1014 ◽  
Author(s):  
Su Lin Chen ◽  
Bin Shen ◽  
Fang Hong Sun

This paper presents a study of the influence of cutting conditions (cutting velocity, feed, cutting depth and lubrication) on turning TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) titanium alloy. Taguchi methodology design was adopt for carrying out experiments. Turning process parameters such as cutting speed, feed rate and depth of cut were varied to study their effect on process responses such as cutting force (Ft), surface roughness (Ra) and temperature on cutting zones (T). Minimum quantity lubrication (MQL) technology was adopt to increase the lubricating and cooling effect. Meanwhile, CVD diamond coating was deposited on the cemented carbide insert to reduce its friction with workpiece and increase its wear resistance. From the analysis of orthogonal tests, depth of cut contributes the most for the main cutting force and cutting temperature, while feed rate had the most significant effect on surface roughness on the workpiece. MQL can reduce the cutting temperature at the cutting zones, especially for the uncoated cutting inserts whose temperature decreases by an average of 60~80°C. The cutting force, surface roughness and cutting temperature of CVD diamond coated inserts were all higher than those of uncoated tools, especially with MQL lubrication. Considering the cutting efficiency and cost, the optimal parameters in the turning process of TC11 for minimizing the cutting force, surface roughness and cutting temperature are obtained as Vc=115m/min, f=0.08mm, ap=0.5mm under MQL lubricating with uncoated cemented carbide as the cutting tool.


Author(s):  
Ghanshyam V. Patel

Abstract: Excavators are popular earthmoving vehicles that consists of a bucket, arm, rotating cab, and movable tracks. These components provide superior digging power and mobility, allowing this heavy equipment to perform a variety of functions. Currently, Industries which uses crawler excavators having Carbon Steel material for movable track roller are facing problem of strength, weight and high cost of track roller material and processes. Hence, selection of proper relevant material and its manufacturing processes will be done which could increase strength as well as decrease weight and overall cost of excavator under carriage track roller assembly parts. Thus, after suitable identification of materials and manufacturing process of track roller assembly parts, optimization and analysis will be done to confirm selected materials. In the present work, by using Taguchi approach, the turning of EN8D carbon steel is carried out in order to optimize the turning process parameters. The present paper deals with the optimization of selected process parameters, i.e., Speed, Feed rate, Depth of cut. Taguchi orthogonal array is designed with three levels of machining parameters and different experiments are done using L9 (3^3) orthogonal array. Taguchi method stresses the importance of studying the response variation using the signal to noise (S/N) ratio, resulting the minimization of quality characteristic variation due to uncontrollable parameter. Predicted value of cutting parameters and verification test values are valid when compared with the optimum value. It is found that optimum value of verification test is within the limits of predicted value and the objective of the work is full filled. Keywords: Crawler excavator, track roller, Taguchi method, Optimization, EN8D carbon steel, signal to noise (S/N) ratio etc.


2020 ◽  
Vol 19 (4) ◽  
pp. 547-558
Author(s):  
M. Ficko ◽  
D. Begic-Hajdarevic ◽  
V. Hadziabdic ◽  
S. Klancnik

The research deals with the optimisation of CNC turning process parameters to determine the optimal parametric combination that provides the minimal surface roughness (Ra) and maximal material removal rate. The experiment was conducted by the CNC turning process of S355J2 carbon steel. Data from the Taguchi design of experiments were the subject of analysis with Grey Relational Analysis (GRA) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). In the present study, three process parameters, such as cutting speed, feed rate and depth of cut, were chosen for the experimentation. It was found that 250 m/min cutting speed, 0.10 mm/rev feed rate and 1.8 mm depth of cut presented the optimal parametric combination by both used multi-objective optimisation methods. Analysis of variance (ANOVA) at a 95 % confidence level was used to determine the most significant parameters. Finally, the accuracy of GRA and TOPSIS results were validated by confirmation experiments.


2016 ◽  
Vol 16 (3) ◽  
pp. 183-187 ◽  
Author(s):  
B. Singaravel ◽  
T. Selvaraj

AbstractCutting tool vibration analysis is the effective way to understand the machining characteristics of any material. In the present work, the effect of process parameters on cutting tool vibration is estimated using Taguchi method in turning of EN25 steel. Taguchi method uses Signal-to-Noise ratio (S/N) and Analysis of Variance (ANOVA) to determine the optimum level of process parameters and significant parameters. The results showed that cutting speed of 215 m/min, feed rate of 0.07 mm/rev and depth of cut of 0.5 mm are the optimum combination of process parameters. Cutting speed and depth of cut are the influencing parameters on cutting tool vibration. The results are experimentally verified and the results based on turning process response can be effectively improved.


Sign in / Sign up

Export Citation Format

Share Document