The Effect of Industrial Structure Change on Carbon Dioxide Emissions: A Cross-Country Panel Analysis

2020 ◽  
Vol 8 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Jichang Dong ◽  
Jing He ◽  
Xiuting Li ◽  
Xindi Mou ◽  
Zhi Dong

AbstractReduction of carbon dioxide (CO2) emissions is one of the biggest challenges for global sustainable development, in which economic growth characterized by industrialization plays a formidable role. We innovatively adopted the input and output (I-O) table of 41 countries released by World I-O Database to determine the industrial structure change and analyze its impact on CO2 emission evolution by developing a cross-country panel model. The empirical results show that industrial structure change has a significantly negative effect on CO2 emissions; to be specific, 0.1 unit increase in the linkage of manufacturing sector and service sector will lead to a decrease of 0.94 metric tons per capita CO2 emissions, indicating that upgrading industrial structure contributes to carbon mitigation and sustainable development. Further, urbanization, technology and trade openness have significantly negative impact on CO2 emissions, while economy growth and energy use take positive impacts. In particular, a 1% increase in per capita income will contribute to an increase of 8.6 metric tons per capita CO2 emissions. However, the effect of industrial structure on environment degradation is moderated by technology level. These findings fill the gaps of previous literature and provide valuable references for effective policies to mitigate CO2 emissions and achieve sustainable development.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Stuti Haldar ◽  
Gautam Sharma

Purpose The purpose of this study is to investigate the impacts of urbanization on per capita energy consumption and emissions in India. Design/methodology/approach The present study analyses the effects of urbanization on energy consumption patterns by using the Stochastic Impacts by Regression on Population, Affluence and Technology in India. Time series data from the period of 1960 to 2015 has been considered for the analysis. Variables including Population, GDP per capita, Energy intensity, share of industry in GDP, share of Services in GDP, total energy use and urbanization from World Bank data sources have been used for investigating the relationship between urbanization, affluence and energy use. Findings Energy demand is positively related to affluence (economic growth). Further the results of the analysis also suggest that, as urbanization, GDP and population are bound to increase in the future, consequently resulting in increased carbon dioxide emissions caused by increased energy demand and consumption. Thus, reducing the energy intensity is key to energy security and lower carbon dioxide emissions for India. Research limitations/implications The study will have important policy implications for India’s energy sector transition toward non- conventional, clean energy sources in the wake of growing share of its population residing in urban spaces. Originality/value There are limited number of studies considering the impacts of population density on per capita energy use. So this study also contributes methodologically by establishing per capita energy use as a function of population density and technology (i.e. growth rates of industrial and service sector).


2016 ◽  
Vol 6 (1) ◽  
pp. 23 ◽  
Author(s):  
John Vourdoubas

Use of fossil fuels in modern societies results in CO2 emissions which, together with other greenhouse gases in the atmosphere, increase environmental degradation and climate changes. Carbon dioxide emissions in a society are strongly related with energy consumption and economic growth, being influenced also from energy intensity, population growth, crude oil and CO2 prices as well as the composition of energy mix and the percentage of renewable energies in it.The last years in Greece, the severe economic crisis has affected all sectors of the economy, has reduced the available income of the citizens and has changed the consumers’ behavior including the consumption of energy in all the activities. Analysis of the available data in the region of Crete over the period 2007-2013 has shown a significant decrease of energy consumption and CO2 emissions due to energy use by 25.90% compared with the reduction of national G.D.P. per capita over the same period by 25.45% indicating the coupling of those emissions with the negative growth of the economy. Carbon dioxide emissions per capita in Crete in 2013 are estimated at 4.96 tons. Main contributors of those emissions in the same year were electricity generation from fuel and heating oil by 64.85%, heating sector by 3.23% and transportation by 31.92%.


2011 ◽  
Vol 71-78 ◽  
pp. 2262-2265
Author(s):  
Jian Hua ◽  
Jun Ren

We calculate the carbon dioxide emissions from the combustion of energy and production process of cement in Jiangsu Province from 1990 to 2009.Through the indicators such as carbon emissions intensity, per capita carbon emissions, we analyze the status and trends of carbon dioxide emissions in Jiangsu Province. Based on the factors of industrial structure, energy structure and high-carbon products, we give some suggestions.


Author(s):  
Wenmei KANG ◽  
Benfan LIANG ◽  
Keyu XIA ◽  
Fei XUE ◽  
Yu LI

After setting the goal of peaking carbon emissions before 2030 and achieving carbon neutrality before 2060, it has become an irresistible trend for China to decouple carbon emissions from its economic growth. Since cities play a central role in reducing carbon emissions, the issues such as whether and when their carbon dioxide emissions can be decoupled from economic growth have become the focus of attention. Based on the carbon dioxide emissions of 264 prefecture-level cities in China from 2000 to 2017, this paper uses the Tapio decoupling index to measure the decoupling relationship between carbon emissions and economic growth of cities, analyzes the space–time evolution characteristics of carbon emissions and decoupling indexes by stages, and explores the relationship between carbon emissions and socio-economic development characteristics such as per capita GDP and industrial structure. The main conclusions drawn therefrom are as follows: (i) From 2000 to 2017, the city-wide carbon emissions rose from 2.484 billion tons in 2000 to 7.462 billion tons in 2017, registering a total increase of 200.40%. But the growth rate of carbon emissions within cities has been significantly reduced. (ii) As years passed by, the number of cities that achieved strong decoupling saw a significant increase, from zero in the 10th–11th Five-Year Plan period to 14 in the 12th Five-Year Plan period and the first two years of the 13th Five-Year Plan period, accounting for 5.3% of the total number of cities. (iii) There is an inverted U-shaped curve relationship between per capita carbon emissions and per capita GDP, which is consistent with the EKC curve hypothesis, but Chinese cities are still in the growth stage of the quadratic curve currently. The correlation between per capita CO2 emission and the proportion of the secondary industry was positive. The results of this study are expected to provide experience for the low-carbon development of cities in China and other developing countries, and provide references for the formulation and evaluation of policies and measures related to low-carbon economic development based on the decoupling model.


2020 ◽  
Vol 12 (15) ◽  
pp. 5916
Author(s):  
Wan-Jiun Chen ◽  
Chien-Ho Wang

To clarify the effects of generalized capitals and energy footprint on aggregate incomes and total carbon dioxide emissions, a cross-country panel analysis is applied in the present study. The generalized capitals included in this study are human capital, manufacture capital, natural capitals (as rents of fossil fuels, forest, and minerals). The energy footprint is represented by the primary energy consumption to index the overall domestic energy use. A Cobb–Douglas production function is used to empirically study on a panel of 21 European Union countries. Annual data of rents of natural capitals are used to represent the economic value of natural capitals that flows to the economy. The following are the main findings of this study: (1) Employing human and manufactural capital makes contributions to income growth and carbon reduction. This study’s evidence guides to clarify the misunderstanding of capital and capitalism. Innovations through well-developed and well-managed human and manufactured capital can help sustain income and reduce carbon dioxide emissions. (2) Energy footprint is the vital determinant to total carbon dioxide emissions and hence the most important part of climate policy. (3) The value currently commeasured by monetary terms and compiled by the World Bank is evidenced, not persistently contributed to the income, rather contributed to total carbon dioxide emissions, for the sake of the energy-intensive attributes in the resource-extracting industry. The natural capitals represented by the rent of extracting endowed natural resources can only represent part of the value of natural capitals to human beings. The virtue values of natural capitals in terms of amenity and life supporting are inevitable, but intangible and hence incommensurable. This value is still ignored and unable to enter the contemporary gate of monetary national accounting system.


Author(s):  
R.G. Nelson, ◽  
C.H. Hellwinckel, ◽  
C.C. Brandt, ◽  
T.O. West, ◽  
D.G. De La Torre Ugarte, ◽  
...  

2012 ◽  
Vol 616-618 ◽  
pp. 1484-1489 ◽  
Author(s):  
Xu Shan ◽  
Hua Wang Shao

The coordination development of economy-energy-environment was discussed with traditional environmental loads model, combined with "decoupling" theory. Considering the possibilities of social and economic development, this paper set out three scenarios, and analyzed quantitatively the indexes, which affected carbon dioxide emissions, including population, per capita GDP, industrial structure and energy structure. Based on this, it forecasted carbon dioxide emissions in China in future. By comparing the prediction results, it held that policy scenario was the more realistic scenario, what’s more it can achieve emission reduction targets with the premise of meeting the social and economic development goals. At last, it put forward suggestions to implement successfully policy scenario, from energy structure, industrial structure, low-carbon technology and so on.


2021 ◽  
Vol 13 (13) ◽  
pp. 7148
Author(s):  
Wenjie Zhang ◽  
Mingyong Hong ◽  
Juan Li ◽  
Fuhong Li

The implementation of green finance is a powerful measure to promote global carbon emissions reduction that has been highly valued by academic circles in recent years. However, the role of green credit in carbon emissions reduction in China is still lacking testing. Using a set of panel data including 30 provinces and cities, this study focused on the impact of green credit on carbon dioxide emissions in China from 2006 to 2016. The empirical results indicated that green credit has a significantly negative effect on carbon dioxide emissions intensity. Furthermore, after the mechanism examination, we found that the promotion impacts of green credit on industrial structure upgrading and technological innovation are two effective channels to help reduce carbon dioxide emissions. Heterogeneity analysis found that there are regional differences in the effect of green credit. In the western and northeastern regions, the effect of green credit is invalid. Quantile regression results implied that the greater the carbon emissions intensity, the better the effect of green credit. Finally, a further discussion revealed there exists a nonlinear correlation between green credit and carbon dioxide emissions intensity. These findings suggest that the core measures to promote carbon emission reduction in China are to continue to expand the scale of green credit, increase the technology R&D investment of enterprises, and to vigorously develop the tertiary industry.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3956 ◽  
Author(s):  
Elkhan Richard Sadik-Zada ◽  
Wilhelm Loewenstein

The present inquiry addresses the income-environment relationship in oil-producing countries and scrutinizes the further drivers of atmospheric pollution in the respective settings. The existing literature that tests the environmental Kuznets curve hypothesis within the framework of the black-box approaches provides only a bird’s-eye perspective on the long-run income-environment relationship. The aspiration behind this study is making the first step toward the disentanglement of the sources of carbon dioxide emissions, which could be employed in the pollution mitigation policies of this group of countries. Based on the combination of two strands of literature, the environmental Kuznets curve conjecture and the resource curse, the paper at hand proposes an augmented theoretical framework of this inquiry. To approach the research questions empirically, the study employs advanced panel cointegration techniques. To avoid econometric misspecification, the study also employs for the first time a nonparametric time-varying coefficient panel data estimator with fixed effects (NPFE) for the dataset of 37 oil-producing countries in the time interval spanning between 1989 and 2019. The empirical analysis identifies the level of per capita income, the magnitude of oil rents, the share of fossil fuel-based electricity generation in the energy mix, and the share of the manufacturing sector in GDP as essential drivers of carbon dioxide emissions in the oil-rich countries. Tertiarization, on the contrary, leads to a substantial reduction of emissions. Another striking result of this study is that level of political rights and civil liberties are negatively associated with per capita carbon emissions in this group of countries. Furthermore, the study decisively rejects an inverted U-shaped income-emission relationship and validates the monotonically or exponentially increasing impact of average income on carbon dioxide emissions.


Sign in / Sign up

Export Citation Format

Share Document