scholarly journals Isolasi dan Seleksi Jamur Endofit Asal Tanaman Kakao Sebagai Agens Hayati Phytophthora palmivora Butl.

2016 ◽  
Vol 3 (3) ◽  
pp. 141
Author(s):  
Rita Harni ◽  
Widi Amaria ◽  
Khaerati Khaerati ◽  
Efi Taufiq

Phytophthora palmivora<em> Butl. is a causal pathogen of black pod rot of cocoa (BPR) which leads to severe crop losses. Control of </em>P. palmivora<em> using biological agents such as endophytic fungi is most recommended for its environmentally friendly benefits. The aim of this research was to obtain endophytic fungi from cacao plant that works as biological agent against </em>P. palmivora<em>. The research was conducted at Plant Protection Laboratory, Indonesian Industrial and Beverage Crops Research Institute (IIBCRI), Sukabumi, from January to July 2015. </em><em>The exploration for endophytic fungi was carried out in cacao producing regions such as Southeast Sulawesi, West Java, and Lampung. The samples taken were of leaves, pods, and branches of a number of cacao varieties and clones</em>. <em>Isolated endophytic fungi were then being sterilized, selected, and studied in vitro using PDA medium and in vivo using cacao pod.</em> <em>The exploration obtained 269 endophytic fungi, consisted of 195 isolates from Southeast Sulawesi, 41 isolates from West Java, and 33 isolates from Lampung. The evaluation of endophytic fungi isolated from </em>P. palmivora<em> showed that there were 4 species of </em>Trichoderma<em> isolates which have potentials for biological agents to control </em>P. palmivora<em>, namely </em><em>SWI, STII, PB5, and SWII</em><em> with inhibitory effect of 70.33%; 68.89%; 67.43%; and 66.67%, respectively.</em>

Author(s):  
I Made Sudarma ◽  
Ni Made Puspawati ◽  
I Ketut Suada

Cocoa pod disease caused by the fungus Phytophthora palmivora has resulted in loss of cacao in Indonesia, especially in Bali. So far the disease control strategy is not fully understood. So there is a need to find an alternative by using endophytic fungi associated with cocoa plant. Endophytic fungi are needed to be explored in all parts of the cocoa plant such as stems, leaves and husks. The prevalence of fungal endophyte was determined by the size of its domination on the surface tissue for protection against pathogen. The exploration of the endophytic fungi benefits is aimed at finding biological agent s that could control of pathogenic P. palmivora.  The results showed that 15 types of endophyte fungi have been found in the healthy leaves, stem and pod husks, with the prevalence of fungal endophyte originated from healthy leaf Mecelia sterilia (hyphae sterile) around 30%, the endophyte fungi originated from the healthy cocoa stem are Mycelia sterilia, Neurospora spp and Trichoderma spp around 25%. While the endophytic fungi originated from healthy skin fruit is Trichoderma spp. around 35%. The in vitro test results of endophytic fungi antagonistic against P. palmivora indicated that the endophyte fungi originated from the leaf namely Aspergillus spp was obtained at 80 ± 2%, A. niger 90 ± 2%, A. flavus 100%, and Trichoderma spp. 90 ± 1.5%, the endophytic fungus originated from rods namely Neurospora spp. was 95 ± 2%, and Trichoderma spp. was 90 ± 2%. While the endophytic originated from rind namely Neurospora spp . was 95 ± 1.5 % and Trichoderma spp. was 80 ± 2%. The results of in vivo test of antagonistic endophytic fungi against P. palmivora showed that all of endophytic fungi (Aspergillus sp., A. niger, A. flavus, Neurospora sp., and Trichoderma sp.) have a significant effect in suppressing the growth of mycelium P. palmivora.Keywords: Endophytic Fungus, Phytophthora Palmivora, Inhibition, Prevalence, Biological Agents


2018 ◽  
Vol 5 (1) ◽  
pp. 39
Author(s):  
Samsudin Samsudin ◽  
Rita Harni ◽  
Efi Taufik

<p>Phytophthora palmivora<em> is a pathogen</em><em>ic fungus</em><em> that causes pod rot and stem cancer in cacao plant. This pathogen was difficult to control because it survives in the form of mycelium and chlamydospores in infected plant parts or in soil. </em>Trichoderma viride<em> is expected to inhibit the growth and development of this pathogen. The study aimed to determine the effectiveness of </em>T. viride<em> in inhibiting </em>P. palmivora<em> infection on cacao, conducted at Plant Protection Laboratory and Greenhouse of Indonesian Industrial and Beverage Crops Research Institute (IIBCRI), Sukabumi from March to December 2014. The </em>T. viride<em> TNU isolates used was purified and propagated in the laboratory. The </em>T. viride<em> inhibition against  </em>P. palmivora<em> growth and development was tested in vitro on potato dextrose agar medium (PDA) and in vivo on infected cacao pods and seedlings. The parameters observed were percentage of inhibition on PDA and the disease progression on infected pods and seedlings. The results showed that </em>T. viride<em> inhibited the growth of </em>P. palmivora<em> with inhibition percentage up to 68.60%, a strong antagonist for </em>P. palmivora<em> on PDA and reduced </em>P. palmivora<em> infection on seedlings in the greenhouse. Applications of </em>T. viride<em> 3 days before or after inoculation with </em>P. palmivora<em> was able to protect cacao seedlings in polybags, respectively by 60% and 45%. However, </em>T. viride<em> has not been able to hinder the development of pod rot disease on cacao.</em><em></em></p>


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


1976 ◽  
Vol 36 (02) ◽  
pp. 401-410 ◽  
Author(s):  
Buichi Fujttani ◽  
Toshimichi Tsuboi ◽  
Kazuko Takeno ◽  
Kouichi Yoshida ◽  
Masanao Shimizu

SummaryThe differences among human, rabbit and guinea-pig platelet adhesiveness as for inhibitions by adenosine, dipyridamole, chlorpromazine and acetylsalicylic acid are described, and the influence of measurement conditions on platelet adhesiveness is also reported. Platelet adhesiveness of human and animal species decreased with an increase of heparin concentrations and an increase of flow rate of blood passing through a glass bead column. Human and rabbit platelet adhesiveness was inhibited in vitro by adenosine, dipyridamole and chlorpromazine, but not by acetylsalicylic acid. On the other hand, guinea-pig platelet adhesiveness was inhibited by the four drugs including acetylsalicylic acid. In in vivo study, adenosine, dipyridamole and chlorpromazine inhibited platelet adhesiveness in rabbits and guinea-pigs. Acetylsalicylic acid showed the inhibitory effect in guinea-pigs, but not in rabbits.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ying Liu ◽  
Wenjie Liu ◽  
Ziqiang Yu ◽  
Yan Zhang ◽  
Yinghua Li ◽  
...  

AbstractBromodomain-containing protein 4 (BRD4) has emerged as a promising treatment target for bone-related disorders. (+)-JQ1, a thienotriazolodiazepine compound, has been shown to inhibit pro-osteoclastic activity in a BRD4-dependent approach and impede bone loss caused by ovariectomy (OVX) in vivo. However, clinical trials of (+)-JQ1 are limited because of its poor druggability. In this study, we synthesized a new (+)-JQ1 derivative differing in structure and chirality. One such derivative, (+)-ND, exhibited higher solubility and excellent inhibitory activity against BRD4 compared with its analogue (+)-JQ1. Interestingly, (-)-JQ1 and (-)-ND exhibited low anti-proliferative activity and had no significant inhibitory effect on RANKL-induced osteoclastogenesis as compared with (+)-JQ1 and (+)-ND, suggesting the importance of chirality in the biological activity of compounds. Among these compounds, (+)-ND displayed the most prominent inhibitory effect on RANKL-induced osteoclastogenesis. Moreover, (+)-ND could inhibit osteoclast-specific gene expression, F‐actin ring generation, and bone resorption in vitro and prevent bone loss in OVX mice. Collectively, these findings indicated that (+)-ND represses RANKL‐stimulated osteoclastogenesis and averts OVX-triggered osteoporosis by suppressing MAPK and NF-κB signalling cascades, suggesting that it may be a prospective candidate for osteoporosis treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hayato Mizuta ◽  
Koutaroh Okada ◽  
Mitsugu Araki ◽  
Jun Adachi ◽  
Ai Takemoto ◽  
...  

AbstractALK gene rearrangement was observed in 3%–5% of non-small cell lung cancer patients, and multiple ALK-tyrosine kinase inhibitors (TKIs) have been sequentially used. Multiple ALK-TKI resistance mutations have been identified from the patients, and several compound mutations, such as I1171N + F1174I or I1171N + L1198H are resistant to all the approved ALK-TKIs. In this study, we found that gilteritinib has an inhibitory effect on ALK-TKI–resistant single mutants and I1171N compound mutants in vitro and in vivo. Surprisingly, EML4-ALK I1171N + F1174I compound mutant-expressing tumors were not completely shrunk but regrew within a short period of time after alectinib or lorlatinib treatment. However, the relapsed tumor was markedly shrunk after switching to the gilteritinib in vivo model. In addition, gilteritinib was effective against NTRK-rearranged cancers including entrectinib-resistant NTRK1 G667C-mutant and ROS1 fusion-positive cancer.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Peng-Fei Fu ◽  
Xuan Cheng ◽  
Bing-Qian Su ◽  
Li-Fang Duan ◽  
Cong-Rong Wang ◽  
...  

AbstractPseudorabies, caused by pseudorabies virus (PRV) variants, has broken out among commercial PRV vaccine-immunized swine herds and resulted in major economic losses to the pig industry in China since late 2011. However, the mechanism of virulence enhancement of variant PRV is currently unclear. Here, a recombinant PRV (rPRV HN1201-EGFP-Luc) with stable expression of enhanced green fluorescent protein (EGFP) and firefly luciferase as a double reporter virus was constructed on the basis of the PRV variant HN1201 through CRISPR/Cas9 gene-editing technology coupled with two sgRNAs. The biological characteristics of the recombinant virus and its lethality to mice were similar to those of the parental strain and displayed a stable viral titre and luciferase activity through 20 passages. Moreover, bioluminescence signals were detected in mice at 12 h after rPRV HN1201-EGFP-Luc infection. Using the double reporter PRV, we also found that 25-hydroxycholesterol had a significant inhibitory effect on PRV both in vivo and in vitro. These results suggested that the double reporter PRV based on PRV variant HN1201 should be an excellent tool for basic virology studies and evaluating antiviral agents.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 963
Author(s):  
Maria C. Holeva ◽  
Athanasios Sklavounos ◽  
Rajendran Rajeswaran ◽  
Mikhail M. Pooggin ◽  
Andreas E. Voloudakis

Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.


Sign in / Sign up

Export Citation Format

Share Document