scholarly journals Removal of Direct 50 Dyes from Aqueous Solution Using Natural Clay and Organoclay Adsorbents

2015 ◽  
Vol 12 (1) ◽  
pp. 157-166 ◽  
Author(s):  
Baghdad Science Journal

In this study, hexadecyltrimethylammonium bromide (HDMAB) - bentonite was synthesized by placing alkylammonium cation onto bentonite. Adsorption of textile dye such as direct Yellow 50 on natural bentonite and HDMAB -bentonite was investigated. The effects of pH, contact time,dosage clay and temperature were investigated experimentally .The Langmuir and Freundlish isotherms equations were applied to the data and values of parameters of these isotherm equations were evaluated. The study indicated that using 0.2 g of HDMAB (hexadecyltrimethylammonium bromide) lead to increase the percentage removal(R%) from 78% for pure bentonite to 99 %. The optimum pH value for the adsorption experiments was found to be pH=3 and therefore all the experiments were carried out at this pH value. The pseudo-second-order kinetic model agrees very well with the experimental results.Different thermodynamic parameters such as Gibb’s free energy, enthalpy and entropy of the on-going adsorption process have also been evaluated. The thermodynamic analyses of the dye adsorption on organoclay indicated that the system was endothermic in nature .

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1625
Author(s):  
Maria Roulia ◽  
Alexandros A. Vassiliadis

Interactions of C.I. Basic Blue 3 with potassium humate in aqueous systems were investigated. Both the humic content and dye removal are of crucial significance in relation to water of a desired quality. Dye retention experiments demonstrated that potassium humate is an exceptionally efficient adsorbent. The effect of both the pH and temperature on the adsorption process was investigated. The temperature proved to only slightly influence the extent of dye sorption; contrarily, under mildly acidic conditions (pH = 4.0), the quantity of dye adsorbed was doubled on standing. At this pH value, interactions between the positively charged dye and the dissociated carboxyl groups of humic substances are encountered. This was also supported by the obedience of the experimental data to the pseudo-second-order kinetic model. Three adsorption models, i.e., Langmuir, Freundlich and BET, were fitted to the experimental data; the equilibrium adsorption conformed to the Langmuir and BET isotherm equations on the basis of electrostatic dye–humics interactions, while the fitting of the Freundlich model referred to the heterogeneities of humic substances attributed to their colloidal behavior. Thermodynamic quantities, i.e., enthalpy, entropy and free energy change in the adsorption, were calculated. The low ΔHadsθ values verify the negligible effect of the temperature on the adsorption; ΔSadsθ denotes a thermodynamically favorable reaction, and ΔGadsθ denotes a spontaneous process.


2020 ◽  
Vol 12 (23) ◽  
pp. 10048
Author(s):  
Heng Wei ◽  
Jiankun Sun ◽  
Bin Zhang ◽  
Rongzhan Liu

Industrial latex sludge as raw material was made into sulfonated latex sludge (SLS) and latex sludge active carbon (LSC) adsorbents by sulfonate and pyrolysis treatment to remove textile dye cationic blue X-GRRL from aqueous solution. The adsorption properties of SLS and LSC for X-GRRL were studied and compared by investigating the experimental parameters such as adsorbents dosage, pH, contact time and initial concentration. The kinetics of adsorption on SLS and LSC followed the pseudo-second-order kinetic model well. The adsorption isotherm and thermodynamic studies were further used to evaluate and compare the adsorption process of X-GRRL on SLS and LSC. The maximum adsorption capacities were 1219.6 mg/g for SLS and 476.2 mg/g for LSC according to the Langmuir model, respectively. These findings not only provide a sustainable strategy to turn industrial solid waste latex sludge into useful material for environment remediation, but also develop an efficient adsorbent for the treatment of dye wastewater.


2020 ◽  
Vol 81 (3) ◽  
pp. 421-435
Author(s):  
Shaimaa M. Ibrahim ◽  
Hany M. Hassanin ◽  
Marwa M. Abdelrazek

Abstract A novel compound was synthesized by the reaction of the amino group of the chitosan with the formyl group of pyrano[3,2-c]quinoline-3-carboxaldehyde moiety, which produced chitosan modified with a Schiff base (chitosan Schiff base). The structure of the newly prepared composite was elucidated. Chitosan Schiff base was used to remove the textile anionic remazol red (RR) dye from wastewater. The kinetic data and adsorption isotherm were best fitted by the pseudo-second-order kinetic model and the Freundlich isotherm, respectively. Thermodynamic parameters were calculated. Chitosan Schiff base resulted in 100% removal of carcinogenic dye at 2 min only with qm 344.8 mg/g, and may do the same for other anionic reactive dyes, thus avoiding secondary pollution.


In the present study, adsorption of toxic dye Diret red 28 (acid benzidinediazo-bis-1- naphtylamine - 4- sulfonique) from aqueous solution was investigated using activated carbon synthesized with Phosphoric Acid activation. The synthesized adsorbent was analyzed using BET, FT-IR and SEM techniques. The BET analysis showed that the area provided by the synthesized activated carbon was 88.01 m2 g-1. The adsorption isotherms of Toxic dye onto ASAC are determined and correlated with common isotherms equations. The smaller RMSE values obtained for the Langmuir and Dubinin-R models indicate the better curves fitting, the monolayer adsorption capacity of toxic dye is found to be 32.85 mg.g-1 at temperature 25 o C and 23.42 mg.g-1 at temperature 65 o C at pH 13. The adsorption of toxic dye was carried out using a batch system and the effects of pH, contact time, adsorbent dosage, initial concentration and temperature on the adsorption capacity of synthesized adsorbent were investigated. Kinetics studies proved that for both metals, the kinetic data follows the pseudo second order kinetic model. In addition, the thermodynamics studies proved that the adsorption process of toxic dye could be considered spontaneous and endothermic.


2017 ◽  
Vol 75 (8) ◽  
pp. 1889-1898 ◽  
Author(s):  
Levent Gürel

Peppers are very important foodstuffs in the world for direct and indirect consumption, so they are extensively used. The seeds of these peppers are waste materials that are disposed of from houses and factories. To evaluate the performance of this biomass in the treatment of wastewaters, a study was conducted to remove a textile dye, reactive blue 221, which is commercially used in textile mills. Raw seed materials were used without any pre-treatment. The effects of contact time, initial concentration of dye, pH and dose of biosorbent were studied to determine the optimum conditions for this biomass on color removal from wastewaters. The optimum pH value for dye biosorption was found to be 2.0. At an initial dye concentration of 217 mg L−1, treatment efficiency and biosorption capacity were 96.7% and 95.35 mg g−1, respectively. A maximum biosorption capacity of 142.86 mg g−1 was also obtained. Equilibrium biosorption of dye by capia seeds was well described by the Langmuir isotherm with a correlation coefficient above 99%. The biosorption process was also successfully explained with the pseudo-second order kinetic model. This biomass was found to be effective in terms of textile dye removal from aqueous solutions.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


2014 ◽  
Vol 79 (7) ◽  
pp. 815-828 ◽  
Author(s):  
Nikola Ilic ◽  
Slavica Lazarevic ◽  
Vladana Rajakovic-Ognjanovic ◽  
Ljubinka Rajakovic ◽  
Djordje Janackovic ◽  
...  

The sorption of inorganic arsenic species, As(III) and As(V), from water by sepiolite modified with hydrated iron(III) oxide was investigated at 25 ?C through batch studies. The influence of the initial pH value, the initial As concentrations, the contact time and types of water on the sorption capacity was investigated. Two types of water were used, deionized and groundwater. The maximal sorption capacity for As(III) from deionized water was observed at initial and final pH value 7.0, while the bonding of As(V) was observed to be almost pH independent for pH value in the range from 2.0 to 7.0, and the significant decrease in the sorption capacity was observed at pH values above 7.0. The sorption capacity at initial pH 7.0 was about 10 mg g?1 for As(III) and 4.2 mg g?1 for As(V) in deionized water. The capacity in groundwater was decreased by 40 % for As(III) and by 20 % for As(V). The Langmuir model and pseudo-second order kinetic model revealed good agreement with the experimental results. The results show that Fe(III)-modified sepiolite exhibits significant affinity for arsenic removal and it has a potential for the application in water purification processes.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


2018 ◽  
Vol 77 (5) ◽  
pp. 1363-1371 ◽  
Author(s):  
Yong Fu ◽  
Yue Huang ◽  
Jianshe Hu ◽  
Zhengjie Zhang

Abstract A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG0 and ΔH0 suggested that the adsorption was a spontaneous exothermic process.


2014 ◽  
Vol 79 (4) ◽  
pp. 495-508 ◽  
Author(s):  
Anikó Kőnig-Péter ◽  
Béla Kocsis ◽  
Ferenc Kilár ◽  
Tímea Pernyeszi

Biosorption of Cd(II) and Pb(II) ions from aqueous solution using lyophilized Pseudomonas aeruginosa (PAOI) cells were observed under various experimental conditions. The effect of pH, initial metal concentration, equilibration time and temperature on bioadsorption was investigated. The optimum pH value for Pb(II) adsorption was found to be 5.0, and for Cd(II) 5.0 ? 6.0. The Pb(II) and Cd(II) bioadsorption equilibrium were analyzed by using Freundlich and Langmuir model using nonlinear least-squares estimation. The experimental maximum uptake capacity of Pb(II) and Cd(II) was estimated to be 164 mg g-1 and 113 mg g-1, respectively. For biosorption kinetic study the pseudo second-order kinetic model was applied at various temperatures. The temperature had no significant effect on Pb(II) bioadsorption. In case of Cd(II) bioadsorption the adsorbed amount decreased with increasing temperature.


Sign in / Sign up

Export Citation Format

Share Document