scholarly journals Synthesis of Pure Nano semiconductor Oxide ZnO with Different AgNO3 Concentrations

2017 ◽  
Vol 14 (2) ◽  
pp. 379-389
Author(s):  
Baghdad Science Journal

Zinc oxide nanoparticles sample is prepared by the precipitation method. This method involves using zinc nitrate and urea in aqueous solution, then (AgNO3) Solution with different concentrations is added. The obtained precipitated compound is structurally characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). The average particle size of nanoparticles is around 28nm in pure, the average particle size reaches 26nm with adding AgNO3 (0.05g in100ml =0.002 M) (0.1g in100ml=0.0058M), AgNO3 (0.2g in 100ml=0.01M) was 25nm. The FTIR result shows the existence of -CO, -CO2, -OH, and -NO2- groups in sample and oxides (ZnO, Ag2O).and used an atomic force microscope and microscope scanning electron to model the record.

2013 ◽  
Vol 32 (5) ◽  
pp. 511-515 ◽  
Author(s):  
Xiao Guo Cao ◽  
Jia Wang ◽  
Qi Bai Wu ◽  
Hai Yan Zhang

AbstractYb:YAG transparent ceramic nano-powder was prepared by chemical co-precipitation method, with ammonium bicarbonate as the precipitant and polyethylene glycol as surfactant. The addition of polyethylene glycol can reduce the agglomeration and particle size of the prepared Yb:YAG powder. The morphology, thermal stability and phase structure of Yb:YAG nano-powder were charactered by scanning electron microscopy (SEM), thermogravimetry and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. The results show that well-crystallized nano-powder was obtained by calcining the precursors at 900 °C for 3 h. The average particle size of Yb:YAG powder is about 100–200 nm. When the volume amount of polyethylene glycol is 2.0%, well-dispersed Yb:YAG powder with spherical particles of 100 nm diameter was obtained.


2016 ◽  
Vol 17 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Sujan Dhungana ◽  
Bhoj Raj Paudel ◽  
Surendra K. Gautam

In this work, we report the ZnTe semiconductor nanoparticles (NPs) prepared by aqueous chemical precipitation method using the tellurium precursor solution with different zinc compounds. Three batches of ZnTe NPs were synthesized to study the effect of dilution on the size and phase purity of ZnTe. The influence of source compounds and concentrations of the size and structure of NPs were studied. ZnTe NPs have great applications as field-effect transistors and photodetectors. The existing controversy regarding the crystalline structure of ZnTe NPs, whether it is cubic or hexagonal, has been resolved using X-ray Diffraction (XRD) data. The ZnTe NPs possess cubic structure, which is also confirmed by Electron Diffraction (ED) pattern. The average particle size determined from XRD data with the help of Debye-Scherrer equation is about 6 nm. The particle size can be further verified by Transmission Electron Microscopy (TEM) studies.  


2018 ◽  
Vol 16 (2) ◽  
pp. 117 ◽  
Author(s):  
Muhammad Fajri Romadhan ◽  
Nurgaha Edhi Suyatma ◽  
Fahim Muchammad Taqi

The aim of this study was to synthesize and characterize Zinc oxide nanoparticles (ZnO-NPs) prepared by precipitation method. Zinc nitrate and sodium hydroxide was used as starting materials with biopolymer pectin as capping agent. ZnO-NPs were synthesized at three levels of temperatures (60, 80 and 100 °C) without or with calcinations (500 °C). Particle size analyzer (PSA) analysis results showed that the samples without calcination (T60, T80 and T100) having an average particle size respectively 105.13, 78.53, and 76.43 nm, whereas at the samples by calcination (T60C, T80C and T100C) each have average particle size of 88.73, 44.30 and 543.77 nm. The results showed that preparation of ZnO-NPs by using heating at 80 °C followed with calcinations at 500 °C (T80C) produced the smallest size. T80C samples further were analyzed using XRD, SEM and the antimicrobial activity compared with the ZnO-NPs commercials. XRD analysis confirmed that ZnO-NPs were successfully obtained and have form of pure nanostructure. SEM analysis showed that ZnO-NPs obtained has a spherical shape. Furthermore, this ZnO-NPs (T80C) has a better antimicrobial activity compared than commercial ZnO-NPs in market.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1285 ◽  
Author(s):  
Andrei Trofimuk ◽  
Diana Muravijova ◽  
Demid Kirilenko ◽  
Aleksandr Shvidchenko

Detonation nanodiamond is a commercially available synthetic diamond that is obtained from the carbon of explosives. It is known that the average particle size of detonation nanodiamond is 4–6 nm. However, it is possible to separate smaller particles. Here we suggest a new approach for the effective separation of detonation nanodiamond particles by centrifugation of a “hydrosol/glycerol” system. The method allows for the production of the detonation nanodiamond hydrosol with a very sharp distribution in size, where more than 85% of particles have a size ranging 1–4 nm. The result is supported by transmission electron microscopy, atomic force microscopy, and dynamic light scattering.


NANO ◽  
2009 ◽  
Vol 04 (04) ◽  
pp. 225-232 ◽  
Author(s):  
TALAAT M. HAMMAD ◽  
JAMIL K. SALEM ◽  
ROGER G. HARRISON

Zinc oxide ( ZnO ) and yttrium-doped ZnO nanoparticles with particle size in the nanometer range have been successfully synthesized by the alkali precipitation method. The nanoparticle size and morphology have been investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). The average particle size of Y-doped ZnO nanoparticles is about 17–29 nm. The absorption and photoluminescence (PL) spectra of the undoped and doped ZnO nanoparticles were also investigated. The optical band gap of ZnO nanoparticles can be tuned from 3.27 to 3.40 eV with increasing yittrium doping levels from 0 to 5%. The nanoparticles gave two emission peaks, one at around 376 nm and the other at 500 nm.


2020 ◽  
pp. 266-276
Author(s):  
Rand Ali ◽  
Zainab Jassim ◽  
Ghada Muhammad Saleh ◽  
Quraysh Abass

     Magnesium oxide nanoparticles (MgO NPs) were synthesized by a green method using the peels of Persimmon extract as the reducing agent , magnesium nitrate, and NaOH. This method is eco-friendly and non-toxic. In this study, an ultrasound device was used to reduce the particle size, with the impact on the energy gap was set at the beginning at 5.39 eV and then turned to 4.10 eV. The morphological analysis using atomic force microscopy (AFM)  showed that the grain size for MgO NPs was 67.70 nm which became 42.33 nm after the use of the ultrasound. The shape of the particles was almost spherical and became cylindrical.  In addition the Field-Emission Scanning Electron Microscopy (FESEM) analysis showed that the average particle size was reduced and the spherical shape was changed into cylindrical flakes. The antibacterial activity of MgO Nps was measured against both gram positive and negative bacteria (Staphylococcus aureus and Escherichia coli, respectively) for both the synthesized and the scaled-down particles by the ultrasonic. MgO NPs showed an efficacy at a minimum inhibitory concentration (MIC) of 500 μg/ml, with the better effect being observed after the ultrasonic treatment of the MgO NPs.


2021 ◽  
Vol 2063 (1) ◽  
pp. 012012
Author(s):  
A H Mohammed ◽  
A N Naje

Abstract Simple process (exploding wire technique) was used to Prepared sliver nanoparticles (AgNPs). The graphene sheet was added to AgNPs with different concentrations (0.002g/ml and 0.01g/ml). well dispersion of AgNPs are achieved by simple chemistry process. The samples were characterized by ultraviolet-visible spectroscopy (UV-Vis), x-ray diffraction (XRD), atomic force microscopy (AFM) and Field emission scanning electron microscope (FESEM). The results showed a wide band absorption of AgNPs-graphene (AgNPs-GN) extended from VU to IR region, surface plasmon resonance (SPR) absorption peak position for the AgNPs at (350-600) nm, XRD confirmed the clear distribution of the peaks attributed to polycrystalline for AgNPs appeared at 20=38.14°, 44.27°, 64.33, and 77.37° respectively and AgNPs-GN at 2θ=26.51° and 54.65°. The AFM showed that AgNPs have uniformly distribution on the surface of graphene sheet. The average size of AgNPs was confirmed by around (50-80) nm by FESEM and the AgNPs-GN have average particle size (20-40) nm. The AgNPs-GN could become prominent candidate for optoelectronic applications.


2011 ◽  
Vol 236-238 ◽  
pp. 1814-1817
Author(s):  
Hong Wang ◽  
Yan Jie ◽  
Hong Luo ◽  
Xue Feng

Monodisperse α-Fe2O3nanoparticles with average particle size of 110 nm were successfully prepared using olyvinylpyrrolidone (PVP) as surfactant via a novel hydrothermal route. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM). The experiments results revealed that PVP and the concentration of NH4HCO3have played a crucial role in the formation of the monodisperse a-Fe2O3nanoparticles.


2012 ◽  
Vol 500 ◽  
pp. 29-33
Author(s):  
Bao Rang Li ◽  
Xin Ming Xi ◽  
Yang Bai

The nano-TiO2powders with the average particle size of about 40nm were used as starting materials. The compacted powders were firstly performed in Spark-plasma-sintering (SPS) at a high temperature and then sintered in air for hours at a relatively low temperature. The obtained samples were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed an obvious reduction in grain size was achieved by taking advantage of modified two step sintering (MTSS). The value of the relative grain growth d/do for the samples prepared by MTSS was less than 3.


2010 ◽  
Vol 93-94 ◽  
pp. 153-156 ◽  
Author(s):  
Pusit Pookmanee ◽  
Sumintra Paosorn ◽  
Sukon Phanichphant

Bismuth vanadate powder was synthesized by a chemical co-precipitation method. Bismuth nitrate and ammonium vanadate were used as the starting precursors. The yellow precipitated powder was formed after adding ammonium hydroxide until the pH of final solution was 7. The powder was filtered and dried at 60 °C for 24h and calcined at 200-400 °C for 2h. The phase of bismuth vanadate powder was studied by X-ray diffraction (XRD). A single phase of monoclinic structure was obtained after calcinations at 200-400 °C for 2h. The morphology and particle size of bismuth vanadate powder were investigated by scanning electron microscopy (SEM). The particle was irregular in shape and highly agglomerated with an average particle size of 0.5 µm in width and 1.5 µm in length.


Sign in / Sign up

Export Citation Format

Share Document