scholarly journals Inhibitory Effect of Bacteriophages Isolated from Sewage Water in the City of Kirkuk on some Types of Human Pathogenic Bacteria

2017 ◽  
Vol 14 (4) ◽  
pp. 727-734 ◽  
Author(s):  
Baghdad Science Journal

Most approaches to combat antibiotic resistant bacteria concentrate on discovering new antibiotics or modifying existing ones. However, one of the most promising alternatives is the use of bacteriophages. This study was focused on the isolation of bacteriophages that are specific to some of commonly human pathogens namely E. coli, Streptococcus pyogenes, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella spp. and Klebsiella pneumoniae. These bacteriophages were isolated from sewages that were collected from four different locations in Kirkuk City. Apart from S. pyogenes, bacteriophages specific to all tested bacteria were successfully isolated and tested for their effectiveness by spot test. The most effective bacteriophages that were isolated from sewages and sewage water of Al-Jumhori Hospital compared to other sites. It is concluded that the sewage water of hospitals represents a perfect environment for these bacteriophages.

Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 136 ◽  
Author(s):  
Ndegwa ◽  
Almehmadi ◽  
Kim ◽  
Kaseloo ◽  
Ako

There is a scarcity of information on antibiotic resistance in goats. To understand shedding of resistant Escherichia coli in pastured goats, we collected fecal samples from a mixed age cohort over a one-year period. No antibiotic had been used on the study animals one year prior to and during the study period. Resistant isolates were detected in all age groups and prevalence in goat kids was significantly higher than adults; 43–48% vs 8–25% respectively. The proportion of resistant isolates was higher when animals were congregated near handling facility than on pasture. Most isolates were resistant to tetracycline (51%) and streptomycin (30%), but also to antibiotics that had never been used on the farm; ampicillin (19%). TetB, bla-TEM, (aadA and strpA/strpB) genes were detected in 70%, 43%, (44% and 24%) of tetracycline, ampicillin, and streptomycin resistant isolates respectively. Resistant isolates also harbored virulent genes and some belonged to D and B2 phylogenetic groups. Thus, pastured goats, despite minimal exposure to antibiotics, are reservoirs of resistant E. coli that may contaminate the environment and food chain and spread resistant genes to pathogenic bacteria and some that are potential animal and human pathogens. Environmental sources may play a role in acquisition of resistant bacteria in pastured goats.


Antibiotics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 871
Author(s):  
Wen-Jie Ng ◽  
Nam-Weng Sit ◽  
Peter Aun-Chuan Ooi ◽  
Kah-Yaw Ee ◽  
Tuck-Meng Lim

Scientific studies about the antibacterial effects of honeydew honey produced by the stingless bee are very limited. In this study, the antibacterial activities of 46 blossom and honeydew honeys produced by both honey bees and stingless bees were evaluated and compared. All bacterial isolates showed varying degrees of susceptibility to blossom and honeydew honeys produced by the honey bee (Apis cerana) and stingless bee (Heterotrigona itama and Geniotrigona thoracica) in agar-well diffusion. All stingless bee honeys managed to inhibit all the isolates but only four out of 23 honey bee honeys achieved that. In comparison with Staphylococcus aureus, Escherichia coli was found to be more susceptible to the antibacterial effects of honey. Bactericidal effects of stingless bee honeys on E. coli were determined with the measurement of endotoxins released due to cell lysis. Based on the outcomes, the greatest antibacterial effects were observed in honeydew honey produced by H. itama. Scanning electron microscopic images revealed the morphological alteration and destruction of E. coli due to the action of this honey. The combination of this honey with antibiotics showed synergistic inhibitory effects on E. coli clinical isolates. This study revealed that honeydew honey produced by H. itama stingless bee has promising antibacterial activity against pathogenic bacteria, including antibiotic resistant strains.


2016 ◽  
pp. 21-24
Author(s):  
Md Kamruzzaman Siddiqui ◽  
Nazma Khatoon ◽  
Pravas Chandra Roy

Antimicrobial resistance in both pathogenic and commensal bacteria is increasing steadily. Failure of antibiotic resistant bacteria containment is responsible for this expansion. Healthcare effluent acts as the store house of harmful infectious pathogens. Potential health risk includes spreading of diseases by these pathogens and wide dissemination of antimicrobial resistance genes. The present study was carried out to investigate the multiple-drug resistance among the bacterial strains that were isolated and identified from the effluents of Jessore Medical College Hospital & Jessore Queen’s hospital private limited. Identified bacteria were E. coli , Klebsiella spp., Enterobacter spp., Proteus vulgaris and Salmonella spp.. Occurrence of E. coli and Enterobacter spp. were found to have the highest percentages and present in majority of the samples. The identified organisms antibiotic resistant pattern were analyzed by agar disc diffusion method against 6 antibiotics. Results of antibiotic susceptibility test showed that all of the isolates were multi-drug resistant (e”4). From the study, we observed that 75% of the isolates were resistant to amoxicillin, followed by Ampicillin (64%), Chloramphenicol (31%), Gentamycin (29%), Nitrofurantoin (27%) and least resistant being Ciprofloxacin 23%. Among the isolates Salmonella spp. were showed highest rate of resistance against all the used antibiotics. The result denotes that, the identified bacteria have been well exposed to the tested antimicrobials and they have established mechanisms to avoid them. Therefore, proper waste water treatment plant should be established to diminish the risk of disseminating multiple drug resistant microorganisms for the safeguard of public health.Bangladesh J Microbiol, Volume 32, Number 1-2,June-Dec 2015, pp 21-24


Author(s):  
Lingli Li ◽  
Ming Yu ◽  
Chao Yang ◽  
Chunping Deng ◽  
Lili Ma ◽  
...  

Abstract Bacteriophage has attracted growing interest as a promising therapeutic agent for pathogenic bacteria, especially for antibiotic-resistant bacteria. However, the various abiotic conditions could impact the stability of phages and further threat host-virus interactions. Here, we investigated the stability and lytic activity of virulent polyvalent coliphage (named PE1) by double-layer plaque assay. PE1 can efficiently infect both the drug-sensitive Escherichia coli K12 and multidrug-resistant E. coli NDM-1 even after prolonged storage at 4 °C up to two months. Results showed that PE1 exhibits an outstanding stability to infect E. coli strains under a wide range of thermal (4 °C–60 °C) and pH (4–11) conditions, which covers the thermal and pH variations of most wastewater treatment plants. Moreover, PE1 exhibited high resistibility to heavy metals exposure including Cu2+, Cd2+, Co2+, and Cr3+ at the concentrations below 0.5 mM, and an excellent resistant ability to the variation of ionic strength, which still retained strong infectious ability even treated with saturated sodium chloride solution (350 g/L). This work shows that polyvalent phage PE1 has a strong adaptive capacity to various abiotic factors and should be a good candidate of being an antibacterial agent, especially for antibiotic-resistant bacteria control in sewage.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 410
Author(s):  
Judith Huygens ◽  
Els Daeseleire ◽  
Jacques Mahillon ◽  
Daan Van Elst ◽  
Johan Decrop ◽  
...  

Antibiotic resistant bacteria and antibiotic residues can enter the environment when using animal manure as fertilizer. Twenty-five mixed beef cattle farmyard manure samples and 9 mixed fattening calf slurry samples from different farms across Belgium were investigated for the presence of 69 antibiotic residues, antibiotic resistant Escherichia coli and Salmonella spp. Doxycycline, oxytetracycline, ciprofloxacin, enrofloxacin, flumequine and lincomycin were detected in all fattening calf slurry samples with mean concentrations of 2776, 4078, 48, 31, 536 and 36 µg/kg manure, respectively. Sulfadiazine was detected at a mean concentration of 10,895 µg/kg. Further, antibiotic residues were found in only 4 of the 25 beef cattle farmyard manure samples. Oxytetracycline was detected twice below 500 µg/kg. Paromomycin, ciprofloxacin and enrofloxacin were detected in a concentration below 100 µg/kg. Of E. coli isolates, 88% and 23% from fattening calf slurry and beef cattle farmyard manure, respectively, were resistant to at least one of the antibiotics tested. Multi-drug resistance was observed at a maximum of 10 and 7 antibiotics, respectively. The occurrence of antibiotic resistant E. coli and antibiotic residues is shown to be higher in fattening calf slurry than in beef cattle farmyard manure used for agricultural field fertilization.


2018 ◽  
Vol 11 ◽  
pp. 117863611878692 ◽  
Author(s):  
Ama Okyere ◽  
Dayna Bishoff ◽  
Micah O Oyaro ◽  
Nadim J Ajami ◽  
Charles Darkoh

Fish has been an important source of proteins, essential vitamins, and low saturated fats for centuries. However, improperly handled fish can expose consumers to infectious bacteria, including difficult to treat multidrug-resistant pathogens. With the goal to investigate the existence of disease-causing and antibiotic-resistant bacteria, we examined bacterial communities present on various types of fish purchased from supermarkets in Houston, Texas, USA. The bacterial communities were characterized by selective phenotypic culture methods, 16S ribosomal RNA gene sequencing, and antibiotic susceptibility testing. The results revealed the presence of different bacterial communities on the fish samples examined. The bacterial communities were not significantly different between the supermarkets sampled. The following presumptive human pathogens were isolated on the fish samples: Escherichia coli (67%), enterohemorrhagic E. coli (31%), Shigella and Salmonella species (28%), Listeria species (29%), and Staphylococcus aureus (28%). Drug sensitivity assays showed resistance to commonly prescribed antibiotics ciprofloxacin, gentamicin, and vancomycin. Out of a total of 99 E. coli samples tested, 41.4% were resistant to ciprofloxacin, whereas 33.3% were resistant to gentamicin. Of the total of 31 S. aureus isolates tested, 87% were resistant to ciprofloxacin, whereas 61.3% were resistant to vancomycin. Moreover, some of the E. coli strains were resistant to both ciprofloxacin and gentamicin (28%), whereas 49% of the S. aureus isolates were resistant to both ciprofloxacin and vancomycin. These results highlight the prevalence of antimicrobial-resistant foodborne pathogens on fish purchased from the supermarkets and underscore the risk associated with improper handling of fish.


2019 ◽  
Vol 57 (3B) ◽  
pp. 49
Author(s):  
Ngoc Thi Anh Tong

This study aimed to investigate the bacterial contamination of flake and cube ice being used dailyin the community. Thirty-one ice samples were collected from different areas in the city of Can Tho city, Vietnam. The enumeration of total aerobic mesophilic counts, the presence of coliforms and Escherichia coli (E. coli) and determination of antibiotics resistance of E. coli isolates were examined. The results indicated that total aerobic mesophilic counts ranged from 2.5 to 6.2 log CFU/mL and significant differences of total aerobic mesophilic counts were found between flake ice and cube ice (p < 0.05). Coliforms and E. coli were present on the ice samples of 93.55% and 58.06%, respectively. A total of 39 E. coli isolates were tested their resistance to 15 different antibiotics. The E. coli isolates of 74.36% were multi-resistance from three to thirteen antibiotics. The high prevalance was resistant to Ampicillin (79.49%), Cefotaxime (69.23%), Ceftazidime (46.15%), Tetracycline (56.41%), Sulfamethoxazole/Trimethoprime (46.15%), Colistin (20.51%), etc. As E. coli is an hygiene indicator and a candidate vehicle for the transfer of antibiotic resistance gene, it is highly recommended using clean and probable water in ice making as well as preventing the spread of antibiotic resistant bacteria.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Safia Arbab ◽  
Hanif Ullah ◽  
Weiwei Wang ◽  
Ka Li ◽  
Ali Akbar ◽  
...  

Pathogens are always a threat to the livestock and domestic animals due to their exposure to the contaminated environments. The study was conducted to evaluation of the prevalence of Escherichia coli, Shigella spp., Salmonella spp., and S. aureus, in farm animals (cattle and buffalos). A total of 150 (n = 150) samples were collected from cattle and buffaloes, 60 samples from cows’ and buffalo’s teats milk, 30 of water samples, and 60 of fecal samples isolates from dairy farm animals, which may act as reservoir disseminating such pathogens. Farm hygiene, management, and milking procedure were listed through a questionnaire. The most common pathogens detected in this study was E. coli 88 (58%) and S. aureus 81 (54%), followed by Salmonella spp. 32 (21%), and Shigella spp. 44 (29%), respectively. During the antibiogram studies, the results revealed that the highest number of bacterial isolates showed resistance against ampicillin 50 (56.8%), followed by ciprofloxacin 23 (26.1%) and augmentin 22 (25%) of Escherichia coli and ampicillin 49 (60.4%), cefpodoxime 23 (28.3%), and augmentin 20 (24.6%) of S. aureus. In the case of Salmonella spp., the highest resistance was showed by amoxicillin 16 (50%). In Shigella spp., the highest resistance was shown by ampicillin 16 (36.3%), followed by cefpodoxime and ceftazidime 10 (22.7%). The high frequency of isolates in this investigation with multiple antibiotic resistance ranges from 15. MARI % value of S. aureus and E. coli 15 (12.5%), followed by Salmonella and Shigella spp. ranges from 12 (10%), suggesting the presence of various antibiotic-resistant bacteria as well as highly resistant bacteria. The mean ± SD zone areas for the greater resistance are for E. coli and S. aureus, already known to be multiresistant, followed by Salmonella spp. and Shigella spp., when the zone areas are for the low resistance, and the findings determined that there was a little difference between S. aureus and E. coli.


2018 ◽  
Vol 42 (2) ◽  
pp. 137-153
Author(s):  
Afra Nawer Maesha ◽  
Lolo Wal Marzan ◽  
Yasmin Akter

Drinking water (unpackaged) samples were collected from twenty roadside shops of different locations in Chittagong metropolitan area, where physicochemical parameters (pH, TDS, temperature) were not exceeded WHO prescribed range in most cases. TVC, TCC, TFCC, TSC, Salmonella spp. and Vibrio spp. were found  contaminated as 85%, 70%, 50%, 20%, 30% and 75%, respectively. All the bacterial isolates (n=43) were found positive for 16S rDNA gene, while 12 isolates were coliform positive identified by lacZ gene amplification. Nine bacterial genera were finally identified depending on biochemical characteristics and two of them were further confirmed by 16S rDNA sequencing. Escherichia coli, Citrobacter spp., Klebsiella pneumoniae and Vibrio cholerae were resistant to amoxicillin, where all the bacterial isolates exhibited sensitivity to ciprofloxacin, gentamicin, imipenam and levofloxacin. Presence of human pathogenic and antibiotic resistant bacteria in unpackaged drinking water, suggested for increasing regular monitoring and public awareness to ensure public health safety Journal of Bangladesh Academy of Sciences, Vol. 42, No. 2, 137-153, 2018


Author(s):  
Deresse Daka ◽  
◽  
Hunachew Beyene ◽  
Simachew Dires ◽  

Background: Aquatic environments close to cities are frequently used as sources for water and at the same time overloaded with a variety of pollutants either through direct or indirect discharges of untreated wastes and sewage. This condition is also worsened by the indiscriminate disposal of untreated wastes and sewage vigorously into used water. Sewage contaminated waters are known to carry microorganisms, some of which are pathogenic to humans. Aim: The aim of this study was to assess the extent of temporal and spatial levels of microbial pollution and sources of pollution in Lake Hawassa. Method: A cross-sectional study was conducted at Lake Hawassa, which was sampled twice during 2017. A total of 26 samples of lake water were collected from 14 stations using a boat. Entry points of incoming streams, waste receiving sites, and areas upstream of anthropogenic impact, recreational and bathing sites were considered. Microbiological characterisation was performed using selective media and basic biochemical tests. Antibiotic sensitivity was tested with different antibiotics using the Kirby-Bauer agar disk diffusion method. Result: All samples were positive for pathogenic bacteria, including Gram-positive and Gram-negative bacteria. Enterobacteriaceae were the most common bacteria identified from the samples, including Escherichia coli, Salmonella spp, Shigella spp, Proteus spp and Gram-positive bacteria, such as Staphylococcus aureus. The predominant bacteria found in the samples include E. coli, which constituted 22/26 (84.6%) of the total samples, followed by Salmonella and Shigella spp. All bacterial isolates were resistant to penicillin and ampicillin. The Salmonella spp were sensitive only to norfloxacin and gentamicin. Conclusion: A spatial variation with the occurrence of bacterial isolates has been observed. High concentrations and many different species were found in areas of human activities and in areas receiving direct pollutants from the city. This study revealed that multidrug resistant (MDR) pathogenic bacteria are found in Lake Hawassa. There is a possibility of outbreak of diseases associated with the isolated antibiotic-resistant pathogens for which the antibiotic resistance genes are transportable within aquatic bacterial communities. We recommend that the city administration take care of the municipal wastewater or effluents from healthcare facilities that enter the lake. It is also recommended that the government take steps to control anthropogenic activities near the water body.


Sign in / Sign up

Export Citation Format

Share Document