scholarly journals Identification of Forearc Sediments in the Milin-Zedong Region and Their Constraints on Tectonomagmatic Evolution of the Gangdese Arc, Southern Tibet

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-20
Author(s):  
Shao-Hua Zhang ◽  
Wei-Qiang Ji ◽  
Hao Zhang ◽  
Guo-Hui Chen ◽  
Jian-Gang Wang ◽  
...  

Abstract The Xigaze forearc sediments revealed the part of the tectonomagmatic history of the Gangdese arc that the bedrocks did not record. However, the sediments’ development is restricted to the region around and west of Xigaze City. Whether the eastern segment of the arc had a corresponding forearc basin is yet to be resolved. In this study, a field-based stratigraphic study, detrital zircon U-Pb geochronology (15 samples), and Hf isotopic analyses (11 of the 15 samples) were carried out on four sections in the Milin-Zedong area, southeast Tibet. The analytical results revealed the existence of three distinct provenances. The lower sequence is characterized by fine-grained sandstone, interbedded mudstone, and some metamorphic rocks (e.g., gneiss and schist). The detrital zircon U-Pb age distribution of this sequence is analogous to those of the Carboniferous-Permian strata and metasediments of the Nyingtri group in the Lhasa terrane. The middle and upper sequences are predominantly composed of medium- to coarse-grained volcaniclastic/quartzose sandstones, which are generally interbedded with mudstone. The detrital zircon U-Pb ages and Hf isotope signatures indicate that the middle sequences are Jurassic to Early Cretaceous in age (~200–100 Ma) and show clear affinity with the Gangdese arc rocks, that is, positive εHft values. In contrast, the upper sequences are characterized by Mesozoic detrital zircons (150–100 Ma) and negative εHft values, indicative of derivation from the central Lhasa terrane. The overall compositions of the detrital zircon U-Pb ages and Hf isotopes of the middle to upper sequences resemble those of the Xigaze forearc sediments, implying that related forearc sediments may have been developed in the eastern part of the Gangdese arc. It is possible that the forearc equivalents were eroded or destroyed during the later orogenesis. Additionally, the detrital zircons from these forearc sediments indicate that this segment of the Gangdese arc experienced more active and continuous magmatism from the Early Jurassic to Early Cretaceous than its bedrock records indicate.

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 371
Author(s):  
Xiaofeng Xie ◽  
Zhenning Yang ◽  
Huan Zhang ◽  
Ali Polat ◽  
Yang Xu ◽  
...  

The middle Mesoproterozoic is a crucial time period for understanding the Precambrian tectonic evolutionary history of the northern Yangtze Block and its relationship with the supercontinent Columbia. The Dagushi Group (Gp) is one of the Mesoproterozoic strata rarely found at the northern margin of the Yangtze Block. U–Pb geochronology and Lu–Hf isotopic analyses of detrital zircons were analyzed for three metamorphic quartz sandstone samples collected from the Luohanling and Dangpuling formations of the Dagushi Gp. These metasandstones yielded major zircon populations at ~2.65 Ga and ~1.60 Ga, respectively. The ~1.60 Ga ages first discovered yield a narrow range of ɛHf(t) values from −1.8 to +1.8, which lie above the old crust evolutionary line of the Yangtze Block, suggesting the addition of mantle material. Trace element data indicate that ~1.60 Ga detrital zircons share a basic provenance, whereby they have low Hf/Th and high Nb/Yb ratios. Zircon discrimination diagrams suggest that the ~1.60 Ga detrital zircon source rocks formed in an intra-plate rifting environment. Dagushi Gp provenance studies indicate that the ~1.60 Ga detrital zircon was most likely sourced from the interior Yangtze Block. Thus, we suggest that the late Paleoproterozoic to early Mesoproterozoic continental break-up occurred at the northern margin of the Yangtze Block.


2019 ◽  
pp. 36-61
Author(s):  
S. V. Rud’ko ◽  
N. B. Kuznetsov ◽  
E. A. Belousova ◽  
T. V. Romanyuk

The U–Pb dating and Hf isotope systematics of detrital zircons from a sandstone interbed in the section of the upper conglomerate sequence of the Mt. South Demerdzhi were carried out. The dominant populations of detrital zircons in the studied sample characterize episodes of magmatic activity within the source of the Upper Jurassic conglomerates. Magmatism was manifested in the Vendian-Cambrian, Carbon-Triassic and Late Jurassic. The åHf values of detrital zircons of these ages indicate the insignificant role of the ancient (Archean–Early Proterozoic) continental crust in the protolith of magmatic chambers. The similarity of the detrital zircons age distribution from the Middle Jurassic and Upper Jurassic conglomerate strata suggests that they are molasses of the Cimmerian orogen. The absence of products of Middle Jurassic magmatism in molasses of the Cimmerian orogen, which we fixed, limits position of the Cimmerian orogen in the southern part of the Scythian plate. It is shown that the primary source of the Precambrian detrital zircons were mobilized within the Cimmerian orogen the crustal fragments of the Peri-Gondwanan origin, rather than the basement complexes of the East European Platform, similar to the complexes of the Ukrainian shield. The reconstruction of the main stages of the accumulation of the coarse-grained strata of the Mountaineous Crimea in the context of the tectonic evolution of the southern margin of Laurasia during the Mesozoic is presented.


Author(s):  
John P. Hogan ◽  
M. Charles Gilbert ◽  
Jon D. Price

A-type felsic magmatism associated with the Cambrian Southern Oklahoma Aulacogen began with eruption of voluminous rhyolite to form a thick volcanic carapace on top of an eroded layered mafic complex. This angular unconformity became a crustal magma trap and was the locus for emplacement of later subvolcanic plutons. Rising felsic magma batches ponding along this crustal magma trap crystallised first as fine-grained granite sheets and then subsequently as coarser-grained granite sheets. Aplite dykes, pegmatite dykes and porphyries are common within the younger coarser-grained granite sheets but rare to absent within the older fine-grained granite sheets. The older fine-grained granite sheets typically contain abundant granophyre.The differences between fine-grained and coarse-grained granite sheets can largely be attributed to a progressive increase in the depth of the crustal magma trap as the aulacogen evolved. At low pressures (<200MPa) a small increase in the depth of emplacement results in a dramatic increase in the solubility of H2O in felsic magmas. This is a direct consequence of the shape of the H2O-saturated granite solidus. The effect of this slight increase in total pressure on the crystallisation of felsic magmas is to delay vapour saturation, increase the H2O content of the residual melt fractions and further depress the solidus temperature. Higher melt H2O contents, and an extended temperature range over which crystallisation can proceed, both favour crystallisation of coarser-grained granites. In addition, the potential for the development of late, H2O-rich, melt fractions is significantly enhanced. Upon reaching vapour saturation, these late melt fractions are likely to form porphyries, aplite dykes and pegmatite dykes.For the Southern Oklahoma Aulacogen, the progressive increase in the depth of the crustal magma trap at the base of the volcanic pile appears to reflect thickening of the volcanic pile during rifting, but may also reflect emplacement of earlier granite sheets. Thus, the change in textural characteristics of granite sheets of the Wichita Granite Group may hold considerable promise as an avenue for further investigation in interpreting the history of this rifting event.


2021 ◽  
Author(s):  
Qian Wang ◽  
Guochun Zhao ◽  
Yigui Han ◽  
Jinlong Yao

&lt;p&gt;The Chinese North Tianshan (CNTS) extends E-W along the southern part of the Central Asian Orogenic Belt and has undergone complicated accretion-collision processes in the Paleozoic. This study attempts to clarify the late Paleozoic tectonism in the region by investigating the provenance of the Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS by U-Pb dating and Lu-Hf isotopic analyses of detrital zircons. Detrital zircon U-Pb ages (N=519) from seven samples range from 261 &amp;#177; 4 Ma to 2827 &amp;#177; 32 Ma, with the most prominent age peak at 313 Ma. There are Precambrian detrital zircon ages (~7%) ranged from 694 to 1024 Ma. The youngest age components in each sample yielded weighted mean ages ranging from 272 &amp;#177; 9 Ma to 288 &amp;#177; 5 Ma, representing the maximum depositional ages. These and literature data indicate that some previously-assumed &amp;#8220;Carboniferous&amp;#8221; strata in the Bogda area were deposited in the Early Permian, including the Qijiaojing, Julideneng, Shaleisaierke, Yangbulake, Shamaershayi, Liushugou, Qijiagou, and Aoertu formations. The low maturity of the sandstones, zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East &amp;#173;Junggar Arc and the Harlik-Dananhu Arc in the CNTS. The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc. Zircon &amp;#603;&lt;sub&gt;Hf&lt;/sub&gt;(t) values have increased since ~408 Ma, probably reflecting a tectonic transition from regional compression to extension. This event might correspond to the opening of the Bogda intra-arc/back arc rift basin, possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean. A decrease of zircon &amp;#603;&lt;sub&gt;Hf&lt;/sub&gt;(t) values at ~300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision, which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous. This research was financially supported by the Youth Program of Shaanxi Natural Science Foundation (2020JQ-589), the NSFC Projects (41730213, 42072264, 41902229, 41972237) and Hong Kong RGC GRF (17307918).&lt;/p&gt;


2020 ◽  
Vol 123 (3) ◽  
pp. 331-342
Author(s):  
T. Andersen ◽  
M.A. Elburg ◽  
J. Lehmann

Abstract Detrital zircon grains from three samples of sandstone from the Tswaane Formation of the Okwa Group of Botswana have been dated by U-Pb and analysed for Hf isotopes by multicollector LA-ICPMS. The detrital zircon age distribution pattern of the detrital zircons is dominated by a mid-Palaeoproterozoic age fraction (2 000 to 2 150 Ma) with minor late Archaean – early Palaeoproterozoic fractions. The 2 000 to 2 150 Ma zircon grains show a range of epsilon Hf from -12 to 0. The observed age and Hf isotope distributions overlap closely with those of sandstones of the Palaeoproterozoic Waterberg Group and Keis Supergroup of South Africa, but are very different from Neoproterozoic deposits in the region, and from the Takatswaane siltstone of the Okwa Group, all of which are dominated by detrital zircon grains younger than 1 950 Ma. The detrital zircon data indicate that the sources of Tswaane Formation sandstones were either Palaeoproterozoic rocks in the basement of the Kaapvaal Craton, or recycled Palaeoproterozoic sedimentary rocks similar to the Waterberg, Elim or Olifantshoek groups of South Africa. This implies a significant shift in provenance regime between the deposition of the Takatswaane and Tswaane formations. However, the detrital zircon data are also compatible with a completely different scenario in which the Tswaane Formation consists of Palaeoproterozoic sedimentary rock in tectonic rather than depositional contact with the other units of the Okwa Group.


Tectonics ◽  
2020 ◽  
Vol 39 (10) ◽  
Author(s):  
Xuhui Wang ◽  
Xinghai Lang ◽  
Juxing Tang ◽  
Yulin Deng ◽  
Qing He ◽  
...  

Geology ◽  
2020 ◽  
Author(s):  
Emily S. Finzel ◽  
Justin A. Rosenblume

Carbonate lacustrine strata in nonmarine systems hold great potential for refining depositional ages through U-Pb dating of detrital zircons. The low clastic sediment flux in carbonate depositional environments may increase the relative proportion of zircons deposited by volcanic air fall, potentially increasing the chances of observing detrital ages near the true depositional age. We present U-Pb geochronology of detrital zircons from lacustrine carbonate strata that provides proof of concept for the effectiveness of both acid-digestion recovery and resolving depositional ages of nonmarine strata. Samples were collected from Early Cretaceous foreland basin fluvial sandstone and lacustrine carbonate in southwestern Montana (USA). Late Aptian–early Albian (ca. 115–110 Ma) maximum depositional ages young upsection and agree with biostratigraphic ages. Lacustrine carbonate is an important component in many types of tectonic basins, and application of detrital zircon U-Pb geochronology holds considerable potential for dating critical chemical and climatic events recorded in their stratigraphy. It could also reveal new information for the persistent question about whether the stratigraphic record is dominated by longer periods of background fine-grained sedimentation versus short-duration coarse-grained events. In tectonically active basins, lacustrine carbonates may be valuable for dating the beginning of tectonic subsidence, especially during periods of finer-grained deposition dominated by mudrocks and carbonates.


2021 ◽  
Vol 62 (3) ◽  
pp. 1-12
Author(s):  

To constrain the paleo - positions of the South China Cratons in the Rodinia Supercontinent during the Neoproterozoic, the in - situ U - Pb dating, and Hf isotope analysis of the detrital zircon from the Nam Co Complex, Song Ma Suture zone, northwestern Vietnam was performed. The U - Pb isotopic dating on detrital zircons shows that the Nam Co Complex demonstrates the major population (>50%) of around ~850 Ma while the minor population is scattered between ~1.2÷3.0 Ga. The Neoproterozoic age spectrum exhibits a large range of the εHf(t) from strongly negative to positive values ( - 17.418022÷ 14.600527), indicating that the source of the magma for this age range has been not only derived from reworking of the Archean basement rocks, but also generated from the juvenile material. The U - Pb age distribution patterns and Hf isotopic data of the detrital zircon in the Nam Co Complex are compatible with those of the South China Craton rather than those of the Indochina Craton. The data also indicate that sedimentary protoliths of the Nam Co Complex were deposited in a convergent - related basin along the southwestern margin of the South China Craton during the Neoproterozoic. Combined with the similarities of the detrital zircon age between western Cathaysia, Indochina, East Antarctica and East India, it is proved that the South China Craton was situated at the margin of the Rodinia Supercontinent and in close proximity to the Indochina, East Antarctica and East India.


2020 ◽  
pp. 1-57
Author(s):  
Yufeng Li ◽  
Renhai Pu ◽  
Gongcheng Zhang ◽  
Hongjun Qu

Sedimentary structures generated by bottom currents are poorly understood worldwide. Ridges and troughs are imaged for the first time by 3D high-resolution seismic data and drilled by a well, YL19-1-1, in the Beijiao sag of Qiongdongnan basin (QDNB). Combined with 2D high resolution seismic data, they are analyzed in detail. The results show that ridges and troughs occur on the top of the Middle Miocene, dominantly present a wave-shaped structure. Their magnitudes are larger on the middle (regional) slope than on the upper and lower slope. They extend for tens of kilometers, dominantly parallel to one another, evenly spaced and nearly E-W directed distribution, some of which locally merge and bifurcate. They are aligned oblique to the regional slope. Both internal mounded reflections and parallel underlying-strata reflections, occur within ridges. The presence of polygonal faults and weak-to-moderate amplitudes within the ridges and troughs, suggests that they consist of fine-grained mudstones, as confirmed by well YL19-1-1. High amplitudes filled within troughs are probably composed of coarse-grained turbidite sandstones where polygonal faults are inhibited. Truncated reflections and onlaps occur along the thalweg of a trough, and are also clearly observed on the sides of ridges and troughs. We conclude the troughs are a product of erosion of bottom currents, and ridges are remnant underlying (sediment waves) strata as a result of this erosion. Besides, troughs are filled by turbidite sandstones with high amplitudes in the southwestern part of the study area, where ridges and troughs a combined result of early erosion by bottom currents and later reworking by turbidity flows. Conceptual schematic models are proposed to show the evolutionary history of ridges and troughs. This study provides new insights into further understanding of erosion and deposition of bottom currents.


2017 ◽  
Vol 155 (5) ◽  
pp. 1063-1088 ◽  
Author(s):  
JIALIN WANG ◽  
CHAODONG WU ◽  
ZHUANG LI ◽  
WEN ZHU ◽  
TIANQI ZHOU ◽  
...  

AbstractField-based mapping, sandstone petrology, palaeocurrent measurements and zircon cathodoluminescence images, as well as detrital zircon U–Pb geochronology were integrated to investigate the provenance of the Upper Carboniferous – Upper Triassic sedimentary rocks from the northern Bogda Mountains, and further to constrain their tectonic evolution. Variations in sandstone composition suggest that the Upper Carboniferous – Lower Triassic sediments displayed less sedimentary recycling than the Middle–Upper Triassic sediments. U–Pb isotopic dating using the LA-ICP-MS method on zircons from 12 sandstones exhibited similar zircon U–Pb age distribution patterns with major age groups at 360–320 Ma and 320–300 Ma, and with some grains giving ages of > 541 Ma, 541–360 Ma, 300–250 Ma and 250–200 Ma. Coupled with the compiled palaeocurrent data, the predominant sources were the Late Carboniferous volcanic rocks of the North Tianshan and Palaeozoic magmatic rocks of the Yili–Central Tianshan. There was also input from the Bogda Mountains in Middle–Late Triassic time. The comprehensive geological evidence indicates that the Upper Carboniferous – Lower Permian strata were probably deposited in an extensional context which was related to a rift or post-collision rather than arc-related setting. Conspicuously, the large range of U–Pb ages of the detrital zircons, increased sedimentary lithic fragments, fluvial deposits and contemporaneous Triassic zircon ages argue for a Middle–Late Triassic orogenic movement, which was considered to be the initial uplift of the Bogda Mountains.


Sign in / Sign up

Export Citation Format

Share Document