Alluvial Fan Alteration Due to Debris-Flow Deposition, Incision, and Channel Migration at Forest Falls, California

2021 ◽  
Vol 27 (1) ◽  
pp. 29-41
Author(s):  
Kerry Cato ◽  
Brett Goforth

ABSTRACT Historical patterns of debris flows have been reconstructed at the town of Forest Falls in the San Bernardino Mountains using a variety of field methods (mapping flow events after occurrence, dendrochronology evidence, soil chronosequences). Large flow events occur when summer thunderstorms produce brief high-intensity rainfall to mobilize debris; however, the geomorphic system exhibits properties of non-linear response rather than being a single-event precipitation-driven process. Previous studies contrasted the relative water content of flows generated by varying-intensity summer thunderstorms to model factors controlling flow velocity and pathway of deposition. We hypothesize that sediment discharge in this geomorphic system exhibits multiple sources of complexity and present evidence of (1) thresholds of sediment delivery from sources at the higher reaches of bedrock canyons, (2) storage effects in sediment transport down the bedrock canyons, and (3) feedbacks in deposition, remobilization, and transport of sediment across the alluvial fan in dynamic channel filling, cutting, and avulsion processes. An example of the first component occurred in March 2017, when snowmelt generated a rapid translational landslide and debris avalanche of about 80,000 m3; this sediment was deposited in the bedrock canyon but moved no farther down gradient. The second component was observed when accumulation of meta-stable sediments in the bedrock canyon remained in place until fluvial erosion and subsequent debris flow provided dynamic instability to remobilize the mass downstream. The third component occurred on the alluvial fan below the bedrock canyon, where low-water-content debris flows deposited sediments that filled the active channel, raising the channel grade level to levee elevation, allowing for subsequent spread of non-channelized flows onto the fan surface and scouring new channel pathways down fan. A conceptual model of spatial and temporal complexities in this debris-flow system is proposed to guide future study for improved risk prediction.

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2314 ◽  
Author(s):  
Shu Wang ◽  
Anping Shu ◽  
Matteo Rubinato ◽  
Mengyao Wang ◽  
Jiping Qin

Non-homogeneous viscous debris flows are characterized by high density, impact force and destructiveness, and the complexity of the materials they are made of. This has always made these flows challenging to simulate numerically, and to reproduce experimentally debris flow processes. In this study, the formation-movement process of non-homogeneous debris flow under three different soil configurations was simulated numerically by modifying the formulation of collision, friction, and yield stresses for the existing Smoothed Particle Hydrodynamics (SPH) method. The results obtained by applying this modification to the SPH model clearly demonstrated that the configuration where fine and coarse particles are fully mixed, with no specific layering, produces more fluctuations and instability of the debris flow. The kinetic and potential energies of the fluctuating particles calculated for each scenario have been shown to be affected by the water content by focusing on small local areas. Therefore, this study provides a better understanding and new insights regarding intermittent debris flows, and explains the impact of the water content on their formation and movement processes.


2011 ◽  
Vol 11 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
J. Lopez Saez ◽  
C. Corona ◽  
M. Stoffel ◽  
A. Gotteland ◽  
F. Berger ◽  
...  

Abstract. Hydrogeomorphic processes are a major threat in many parts of the Alps, where they periodically damage infrastructure, disrupt transportation corridors or even cause loss of life. Nonetheless, past torrential activity and the analysis of areas affected during particular events remain often imprecise. It was therefore the purpose of this study to reconstruct spatio-temporal patterns of past debris-flow activity in abandoned channels on the forested cone of the Manival torrent (Massif de la Chartreuse, French Prealps). A Light Detecting and Ranging (LiDAR) generated Digital Elevation Model (DEM) was used to identify five abandoned channels and related depositional forms (lobes, lateral levees) in the proximal alluvial fan of the torrent. A total of 156 Scots pine trees (Pinus sylvestris L.) with clear signs of debris flow events was analyzed and growth disturbances (GD) assessed, such as callus tissue, the onset of compression wood or abrupt growth suppression. In total, 375 GD were identified in the tree-ring samples, pointing to 13 debris-flow events for the period 1931–2008. While debris flows appear to be very common at Manival, they have only rarely propagated outside the main channel over the past 80 years. Furthermore, analysis of the spatial distribution of disturbed trees contributed to the identification of four patterns of debris-flow routing and led to the determination of three preferential breakout locations. Finally, the results of this study demonstrate that the temporal distribution of debris flows did not exhibit significant variations since the beginning of the 20th century.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1536
Author(s):  
Yanbo Cao ◽  
Xinghua Zhu ◽  
Bangxiao Liu ◽  
Yalin Nan

Mine waste debris flows are a type of man-made debris flow that commonly lead to major disasters. In this study, the Xiaotong Gully, which is located in the Xiaoqinling gold mining area in China and contains a typical mine waste debris flow gully, was selected as the study area. Since a debris flow can be classified as either a geotechnical debris flow or hydraulic debris flow based on its initiation mode, we conducted 46 experimental model tests to explore the initiation conditions of these two different types of debris flows. According to our tests, the initiation conditions of hydraulic debris flows were mainly affected by the flume gradient, the water content of the mine waste, the inflow discharge, the water supply modes, and the clay particle content. A larger flume gradient and higher mine waste water content were more conducive to initiating a hydraulic debris flow. However, the influence of the water supply mode on the initiation of a hydraulic debris flow was complex (influenced by factors such as water content of mine waste, runoff discharge rate and rainfall intensity). The critical runoff of a hydraulic debris flow, which starts with a parabolic relationship to the clay particle content of the mine waste, decreased with increasing clay particle content and then increased. There was a minimum critical runoff when the clay content of the mine waste was 30%. The initiation conditions of a geotechnical debris flow were mainly affected by the flume gradient, the water content, and the clay particle content. The critical gradient of a geotechnical debris flow decreased with increasing water content and had a parabolic relationship to the clay particle content. In tests 31–46 of this study, the second and third critical slopes both decreased and then increased with increasing clay particle content. These preliminary research results provide a scientific reference for subsequent research on the prevention and mitigation of mine waste debris flows.


2001 ◽  
Vol 7 (3) ◽  
pp. 221-238 ◽  
Author(s):  
Oldrich Hungr ◽  
S. G. Evans ◽  
M. J. Bovis ◽  
J. N. Hutchinson

Abstract As a result of the widespread use of the landslide classifications of Varnes (1978), and Hutchinson (1988), certain terms describing common types of flow-like mass movements have become entrenched in the language of engineering geology. Example terms include debris flow, debris avalanche and mudslide. Here, more precise definitions of the terms are proposed, which would allow the terms to be retained with their original meanings while making their application less ambiguous. A new division of landslide materials is proposed, based on genetic and morphological aspects rather than arbitrary grain-size limits. The basic material groups include sorted materials: gravel, sand, silt, and clay, unsorted materials: debris, earth and mud, peat and rock. Definitions are proposed for relatively slow non-liquefied sand or gravel flows, extremely rapid sand, silt or debris flow slides accompanied by liquefaction, clay flow slides involving extra-sensitive clays, peat flows, slow to rapid earth flows in nonsensitive plastic clays, debris flows which occur in steep established channels or gullies, mud flows considered as cohesive debris flows, debris floods involving massive sediment transport at limited discharges, debris avalanches which occur on open hill slopes and rock avalanches formed by large scale failures of bedrock.


2021 ◽  
Vol 21 (10) ◽  
pp. 3015-3029
Author(s):  
Ivo Janos Fustos-Toribio ◽  
Bastian Morales-Vargas ◽  
Marcelo Somos-Valenzuela ◽  
Pablo Moreno-Yaeger ◽  
Ramiro Muñoz-Ramirez ◽  
...  

Abstract. Debris flow generation in volcanic zones in the southern Andes has not been widely studied, despite the enormous economic and infrastructure damage that these events can generate. The present work contributes to the understanding of these dynamics based on a study of the 2017 Petrohué debris flow event from two complementary points of view. First, a comprehensive field survey allowed us to determine that a rockfall initiated the debris flow due to an intense rainfall event. The rockfall lithology corresponds to lava blocks and autobrecciated lavas, predominantly over 1500 m a.s.l. Second, the process was numerically modelled and constrained by in situ data collection and geomorphological mapping. The event was studied by back analysis using the height of flow measured on Route CH-255 with errors of 5 %. Debris flow volume has a high sensitivity with the initial water content in the block fall zone, ranging from 4.7×105 up to 5.5×105 m3, depending on the digital elevation model (DEM) used. Therefore, debris flow showed that the zone is controlled by the initial water content available previous to the block fall. Moreover, our field data suggest that future debris flows events can take place, removing material from the volcanic edifice. We conclude that similar events could occur in the future and that it is necessary to increase the mapping of zones with autobrecciated lava close to the volcano summit. The study contributes to the understanding of debris flows in the southern Andes since the Osorno volcano shares similar features with other stratovolcanoes in the region.


2021 ◽  
Vol 8 ◽  
Author(s):  
Li Wei ◽  
Kaiheng Hu ◽  
Jin Liu

Debris flows, which cause massive economic losses and tragic losses of life every year, represent serious threats to settlements in mountainous areas. Most deaths caused by debris flows in China occur in buildings, and the death toll is strongly dependent on the time people spend indoors. However, the role of time spent indoors in the quantitative analysis of debris flow risk has been studied only scarcely. We chose Luomo village in Sichuan atop a debris flow alluvial fan to study the influence of the temporal variation in the presence of people inside buildings on the societal risk. Two types of days (holidays vs. workdays) and two diurnal periods (daytime vs. nighttime) were considered in our risk evaluation model. A questionnaire survey was conducted for each family in the village, and the probability of the temporal impact of a debris flow on every household was calculated based on the average amount of time each member spent in the house. The debris flow hazard was simulated with FLO-2D to obtain the debris flow intensity and run-out map with return periods of 2, 10, 50, and 100 years. The risk to buildings and societal risk to residents were calculated quantitatively based on the probabilities of debris flow occurrence, the probability of the spatial impact, and the vulnerabilities of buildings and people. The results indicated that societal risk on holidays is always higher than that on weekdays, and societal risk at night is also much higher than that in the daytime, suggesting that the risk to life on holidays and at night is an important consideration. The proposed method permits us to obtain estimates of the probable economic losses and societal risk to people by debris flows in rural settlements and provides a basis for decision-making in the planning of mitigation countermeasures.


1970 ◽  
Vol 10 ◽  
pp. 9-20
Author(s):  
Naresh Kazi Tamrakar ◽  
Achut Prajapati ◽  
Suman Manandhar

Mountainous and hilly regions are potential for debris flows, one of the major forms of natural disasters, which cause serious damage in downstream areas. The southwestern region of the Kathmandu Valley experienced catastrophic flows in the Champadevi River and its two tributaries (the Aitabare and the Raute Rivers) in July 2002. These rivers were investigated for morphologic, hydraulic and sedimentary characteristics to evaluate potential of debris flow in the area. The Raute and the Aitabare Rivers have tendency of headward erosion due to abrupt drop of gradient down the scarp of the alluvial fan deposit composed of unconsolidated matrix-supported gravel and mud. Because of this tendency, the rivers erode their substrate and banks, and contribute slope movements by sheding a huge amount of clasts and matrix. Therefore, instability condition of rivers and unconsolidated material available in the river courses potentially contribute for debris flow. The tractive shear stresses in the Aitabare, the Raute and the Champadevi Rivers (1.27, 1.60 and 0.48 KPa, respectively) exceeds twice the critical shear stresses required to transport 90th-percentile fraction of the riverbed material (0.14, 0.18 and 0.11 KPa). The stream powers (10.8, 17.2 and 5.1 m-kN/s/m2) of these rivers also greatly exceed the critical stream powers (0.21, 0.35 and 0.18 m-kN/s/m2) required to initiate traction transport. Because the tractive shear stresses and the stream powers that are achieved during bankfull flow are several times larger than the corresponding critical values, even the flow having stream power exceeding the critical stream power may potentially generate debris flow.   doi: 10.3126/bdg.v10i0.1416 Bulletin of the Department of Geology, Tribhuvan University, Kathmandu, Nepal, Vol. 10, 2007, pp. 9-20


2021 ◽  
Author(s):  
Paul Santi ◽  
Francis Rengers

<p>Wildfire is a global phenomenon that is expected to increase in extent and severity due to shifting land management practices and climate change. It removes vegetation, deposits ash, influences water-repellent soil formation, and physically weathers rock. These changes typically lead to increased erosion through sheetwash, rilling, rock spalling, and dry ravel, as well as increased mass movement in the form of floods, debris flows, rockfall, and landslides. Post-wildfire changes in these processes bring about landform changes as hillslopes are lowered and stream channels aggrade or incise at increased rates. Research has documented increases in erosion after wildfire ranging from 2-1000 times the pre-fire rates. Post-wildfire landscape lowering by erosion has been measured in the western U.S. at magnitudes of 2 mm per year, with sediment delivery at the mouths of canyons increased in the range of 160-1000% during the post-wildfire window of disturbance. Furthermore, post-wildfire sediment transport enhances the development of alluvial fans, debris fans, and talus cones. Debris-flow likelihood is increased following wildfire, such that modest rainstorms with <2 year recurrence intervals are typically sufficient to trigger debris flows with volumes much larger (270-540%) than at unburned sites. In the western U.S., as much as 25-50% of alluvial fan accumulation can be attributed to post-wildfire debris flows and other post-wildfire fluvial transport. The window of disturbance to the landscape caused by wildfire is typically on the order of three to four years, with some effects persisting up to 30 years.  Consequently, wildfire is an important agent of geomorphic change.</p>


2012 ◽  
Vol 166-169 ◽  
pp. 2769-2773
Author(s):  
Jin Feng Liu ◽  
Yong You ◽  
Xing Chang Chen

This paper presented a case analysis of debris flow hazards and its mitigation works. The Xianbuleng Gully which is located in Jinchuan County, Sichuan Province was selected as study area. This gully is an old debris flow gully which once burst out many debris flow disasters in history. If debris flows occur again in this gully, the township government, the center school and 13 village houses nearly 300 persons on the alluvial fan will be exposed to great risk.The environment settings and the hazard characteristics of the Xianbuleng debris flow were introduced first in this paper. Then, mitigation works especially the drainage canal under the optimal hydraulic condition were planned and designed in the gully for decreasing the debris flow hazards.


Geology ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 189-193 ◽  
Author(s):  
Roman A. DiBiase ◽  
Michael P. Lamb

Abstract Landscapes following wildfire commonly have significant increases in sediment yield and debris flows that pose major hazards and are difficult to predict. Ultimately, post-wildfire sediment yield is governed by processes that deliver sediment from hillslopes to channels, but it is commonly unclear the degree to which hillslope sediment delivery is driven by wet versus dry processes, which limits the ability to predict debris-flow occurrence and response to climate change. Here we use repeat airborne lidar topography to track sediment movement following the 2009 CE Station Fire in southern California, USA, and show that post-wildfire debris flows initiated in channels filled by dry sediment transport, rather than on hillsides during rainfall as typically assumed. We found widespread patterns of 1–3 m of dry sediment loading in headwater channels immediately following wildfire and before rainfall, followed by sediment excavation during subsequent storms. In catchments where post-wildfire dry sediment loading was absent, possibly due to differences in lithology, channel scour during storms did not occur. Our results support a fire-flood model in bedrock landscapes whereby debris-flow occurrence depends on dry sediment loading rather than hillslope-runoff erosion, shallow landslides, or burn severity, indicating that sediment supply can limit debris-flow occurrence in bedrock landscapes with more-frequent fires.


Sign in / Sign up

Export Citation Format

Share Document