scholarly journals SORBENT-BASED METHOD OF SOILS DETOXIFICATION FROM HEAVY METALS

2021 ◽  
Vol 13 (1) ◽  
pp. 135-150
Author(s):  
Vera YURAK ◽  
◽  
Raphail APAKASHEV ◽  
Niyaz VALIEV ◽  
Maxim LEBZIN ◽  
...  

Abstract. The sorbent-based method is one of the key methods for solving the problem of limiting the mobility of pollutants and the effective implementation of reclamation works. Despite the level of knowledge of the problem, the use of the sorbent-based method is of a fragmented experimental nature. Objective: to study the experience of implementing the sorbent-based method for the adsorption of heavy metals in order to determine the most promising compositions of sorbents for further research work on their improvement. Methods: General scientific methods were used, such as dialectical, historical, analysis, synthesis, comparison, grouping, as well as systematic and empirical approaches. Results: The presence of pluralism of definitions in relation to the term “heavy metals”was revealed. The main criterion for attribution is the relative atomic mass of more than 50 g/mol. An additional criterion is the density, which is approximately equal to or greater than the density of iron (rounded 8 g / cm3). There are other classifications that rely on threshold density or atomic mass values. It is proved that the main role of the immobilization of heavy metals is their transfer to new, more geochemical stable phases by sorption, precipitation, and complex formation processes. The widespread use of the sorbent-based method, which solves the problem of converting heavy metals into a sedentary form and difficult-to-dissolve compounds, has been identified. It is revealed that an important process affecting the mobility of heavy metals in the soil is their fixation with humus. It is established that rocks and minerals have pronounced sorption properties. The most common rocks are clays. They are characterized by a significant sorption capacity and a high specific surface area. In order to increase the sorption properties, the materials can be subjected to various modifications. Peat occupies a special place among effective natural sorbents. The development of technologies for the creation and use of new sorbents made from industrial waste is a promising direction. A method of remediation based on the use of ameliorants–stabilizers of heavy metals has been developed: among the mineral elements of the solid phase, fine clay and ferrous minerals are isolated; compost and manure are often used as organic stabilizers. The possibility of rerational use of industrial waste components as meliorants-stabilizers of heavy metals is investigated, and the sediments of water treatment at filtration stations are of interest in this regard. The remediation potential of water treatment sediments can be enhanced by joint application with natural or modified peat.

RSC Advances ◽  
2019 ◽  
Vol 9 (48) ◽  
pp. 27825-27834 ◽  
Author(s):  
Zayed M. M. Abu Tawila ◽  
Salmah Ismail ◽  
Salem S. Abu Amr ◽  
Emad K. Abou Elkhair

In this study, a novel bioflocculant was produced using Bacillus salmalaya 139SI for industrial waste water treatment.


2018 ◽  
Vol 761 ◽  
pp. 35-38 ◽  
Author(s):  
Pavlо Krivenko ◽  
Oleksandr Kovalchuk ◽  
Anton Pasko

The paper discloses an effective way of utilization of industrial waste water treatment residues. The wide use of industrial waste water in building materials is difficult due to the presence of heavy metal. However, alkali activated cements showed high ability of immobilization of heavy metals. The compressive strength of AAC systems with water treatment residues (galvanic process waste water) is up to 40 MPa in mortars and 45 MPa in concretes. The leaching behaviour of heavy metals from the cements matrix after soaking up to 28 days was also examined with AAS.


Author(s):  
Mahmud Mohammed Imam ◽  
Zahra Muhammad ◽  
Amina Zakari

In this research work the concentration of zinc, copper, lead, chromium, cadmium, and nickel in cow milk samples obtained from four different grazing areas   (kakuri, kudendan, malali, kawo) of Kaduna metropolis. The samples were digested by wet digestion technique .The trace element were determined using bulk scientific model VPG 210 model  Atomic Absorption Spectrophotometer (AAS).. The concentration of the determined heavy metal were The result revealed that Cr,  Ni and Cd were not detected in milk samples from Kawo, Malali  and Kudendan whereas lead (Pb) is detected in all samples and found to be above  the stipulated limits of recommended dietary allowance (NRC,1989) given as 0.02mg/day. Cu and Zn are essential elements needed by the body for proper metabolism and as such their deficiency or excess is very dangerous for human health. However, they were found in all samples and are within the recommended limits while Cd (2.13 – 3.15 mg/kg) in milk samples from Kakuri was found to be above such limit (0.5mg/day). Cow milk samples analyzed for heavy metals in this research work pose a threat of lead and cadmium toxicity due to their exposure to direct sources of air, water and plants in these grazing areas, thereby, resulting to a potential health risk to the consumers.


Author(s):  
Maria Y. Savostyanova ◽  
◽  
Lidia А. Norina ◽  
Arina V. Nikolaeva ◽  
◽  
...  

Retaining of water resources quality is one of the global ecological problems of the modern time. The most promising direction in solving the problem of water resources protection is the reduction of negative environmental influence of waste water from production facilities by upgrading the existing water treatment technologies. To treat utility water, technical and rain water from site facilities of Transneft system entities, the specialists developed and approved standard technological diagrams, which are used in producing treatment facilities. The standard technological diagrams provide for all necessary stages of waste water treatment ensures the reduction of pollution level to normal values. However, during operation of treatment facilities it was established, that to ensure the required quality of waste water treatment with initially high levels of pollution, the new technological solutions are necessary. The author presents the results of scientific-research work, in the context of which the best affordable technologies were identified in the area of the treatment of waste water with increased content of pollutants and non-uniform ingress pattern. On the basis of the research results the technical solutions were developed for optimization of operation of existing waste water treatment facilities by means of using combined treatment of technical and rain waters and utility waste waters and applying bioreactor with movable bed – biochips. The use of bioreactor with movable bed allows the increase in the area of active surface, which facilitates increase and retention of biomass. Biochips are completely immersed into waste waters, and biofilm is formed on the entire volume of immersion area, facilitating retention of biomass and preventing formation of sediments. Due to mixing the floating device with biofilm constantly moves along the whole area of bioreactor, and, in doing so, speeds up biochemical processes and uniformity of treatment. The advantages of a bioreactor with movable bed – its active sludge durability against increased and changing pollutant concentrations, change of waste water temperature and simplicity of application – ensured the possibility of its use for blending utility waters, technical and rain waters.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Taty Hernaningsih

Waste water treatment by industry usually uses chemicals that may lead to additional environmental pollution load. On the other hand, water demand increases and environmental regulations regarding waste water disposal requirements that apply more stringent. It is necessary for waste treatment technique that accommodate this requirement. Electrocoagulation process is a technique of wastewater treatment that has been chosen because the technique is environmentally friendly. This paper will review some of the research or application electrocoagulation process which is conducted on industrial waste water. Types of industrial waste water that is to be reviewed include: industries batik, sarongs, textiles, palm oil, slaughterhouses, food, leather tanning, laundry, pulp and paper. Overview reviewed in this research include the waste water treatment process in several processing variations such as: change in time, electricity and kind of electrodes. The results of the research with electrocoagulation process in the industry are the removal efficiency of TSS, COD, BOD5, Chrome, phosphate, surfactants, color turbidity influenced by several factors including time, strong current, voltage, distance and type of electrode and pH. The results of the study with electrocoagulation process in the industry is the removal efficiency of TSS, COD, BOD5, chromium, phosphate, surfactant, turbidity color that are influenced by several factors including time, strong current, voltage, distance and type of electrode and pH. It is hoped the information presented in this article can be a reference for similar research for the improvement of research on the process ektrokoagulasi.Key words: elektrocoagulation, removal eficiency, environmental friendly


1982 ◽  
Vol 14 (12) ◽  
pp. 107-125 ◽  
Author(s):  
Roland Wollast

A comparison of the concentration of dissolved and of particulate heavy metals in the aquatic system indicates that these elements are strongly enriched in the suspended matter. The transfer between the aqueous phase and the solid phase may be due to dissolution-precipitation reactions, adsorption-desorption processes or biological processes. When these processes are identified, it is further possible to develop mathematical models which describe the behaviour of these elements. The enrichment of heavy metals in the particulate phase suspended or deposited and in aquatic organisms constitutes a powerful tool in order to evaluate sources of pollution.


Polymer ◽  
2020 ◽  
Vol 190 ◽  
pp. 122191
Author(s):  
Iwona Jakubowska ◽  
Stanisław Popiel ◽  
Mateusz Szala ◽  
Michał Czerwiński ◽  
Maciej Chrunik ◽  
...  

2012 ◽  
Vol 65 (6) ◽  
pp. 983-988 ◽  
Author(s):  
M. Poberžnik ◽  
A. Leis ◽  
A. Lobnik

CO2 gas with a special isotopic signature (δ13C = −35.2‰ vs. VPDB) was used as a marker to evaluate the efficiency of a drinking water treatment method and the effect of an ultrasonic (US) stirrer. This treatment was developed to prevent precipitation and corrosion effects in water–supply systems. The research work was performed using a laboratory-scale pilot plant that was filled with tap water. The stable isotope analyses of δ13C-DIC (Dissolved Inorganic Carbon) in the water samples indicated that the maximum content of added CO2 gas in DIC was in the range of 35 to 45%. The use of the US stirrer during the entire experiment decreased the method's overall efficiency by 10%, due to degassing at a late stage of the experiment but accelerated the dissolution process in the early experimental stage.


Sign in / Sign up

Export Citation Format

Share Document