Modeling and Simulation of Flow Field Around a Blowout Well

SPE Journal ◽  
2012 ◽  
Vol 17 (01) ◽  
pp. 212-218 ◽  
Author(s):  
Ebrahim Hajidavalloo ◽  
Parham Omidian

Summary Modeling and simulation of a blowing-out oil/gas well is very important in the drilling industry because they can accurately predict the velocity, pressure, and temperature fields around the well. This would help the personnel during the control operation to make proper decisions with minimum risk. In this paper, hydrodynamics and thermal behavior of a gaseous-well blowout were investigated. The flow was modeled as a free turbulent jet discharging in the atmosphere. A realizable k-ε model was used to model the turbulence, and a non-premixed model was used to model the combustion. The effect of placing a flow tube on the wellhead was studied. The results showed that combustion has an important effect on the flow behavior around the well by doubling the suction flow rate. Using the flow tube has a significant effect by concentrating the vacuum at the bottom of the wellhead, and increasing the flow-tube diameter increases the suction flow rate. It was also found that the drag force on the flow tube will be increased when the flow is reacting or when the flow-tube diameter is increased.

SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1470-1476 ◽  
Author(s):  
Ebrahim Hajidavalloo ◽  
Saeed Alidadi Dehkohneh

Summary When a blowout oil/gas well catches fire, usually a flow tube is used to detach the fire from the wellhead and provide appropriate conditions for operating team members to approach the well and install the blowout-preventer (BOP) cap. Using the flow tube above the wellhead creates powerful suction around the tube that may jeopardize the safety of crew members. To reduce the power of suction around the well, a new perforated flow tube instead of simple flow tube was introduced. To understand the effect of this new type of flow tube, modeling and simulation of the flow field around the blowout well were performed for both simple and perforated types of flow tube with Fluent 6.3.26 (2003) and Gambit 2.3.16 (2003) softwares. Different parameters around the well mouth were compared in both designs. The results showed that using the perforated flow tube decreases the vacuum around the well by 33% compared with the simple flow tubes. Thus, application of the perforated flow tube can be recommended in well-control operations for safety measures.


Author(s):  
Deepak Nabapure ◽  
Ram Chandra Murthy

Abstract The present study investigates the flow behavior of the rarefied gas over a wall-mounted cube. The problem is studied for different cube heights (h) of 9mm and 18mm in the slip and transition regimes. The Direct Simulation Monte Carlo (DSMC) method is employed to evaluate the properties such as velocity, pressure and temperature fields. The Reynolds number (Re) ranges from 403 to 807, and the Knudsen number (Kn) is in the range from 0.05 to 0.103. A typical shock wave is formed in front of the cube. The recirculation length of the vortices normalized with respect to the respective cube heights for Kn = 0.05 and Kn = 0.103 are about 1.11 and 1.95 respectively. Similarly, the center of the vortices is located at about 3.33 and 6.11 times the respective cube heights upstream, for Kn = 0.05 and Kn = 0.103. The local temperature and pressure variations observed upstream of the cube are two orders higher in magnitude and are primarily attributed to strong compressibility effects. The present study paves the way for benchmarking, and forms a basis for understanding the rarefied gas flows over complex geometries.


Author(s):  
Fu Chen ◽  
Yanping Song ◽  
Huanlong Chen ◽  
Zhongqi Wang

The effects of boundary layer suction on the aerodynamic performance of compressor cascade are mainly determined by: (1) the location of the suction slot; (2) the suction flow rate; (3) the suction slot geometry; and (4) the aerodynamic parameters of the cascade (e.g. solidity and incidence). In this paper, an extensive numerical study has been carried out to investigate the effects of these influencing factors in a highly-loaded compressor cascade by comparing the aerodynamic performance of the cascade in order to give guidance for the application of boundary layer suction to improve the performance of modern highly-loaded compressors. The results show that boundary layer suction alleviates the accumulation of low-energy fluid at suction surface corners and enhances the ability of flow turning, and this improvement in flow behavior depends on the location of the suction slot and the suction flow rate. When the location of the suction slot and the suction flow rate are fixed, as the cascade solidity decreases from 1.819 to 1.364 and 1.091, the cascade total pressure loss is reduced at most by 25.1%, 27.7% and 32.9% respectively, and the cascade exit flow deviation is decreased by 3.1°, 4.2° and 5.0° accordingly. Moreover, boundary layer suction also has the largest effect in the cascade with smaller solidity at large positive incidences, which means that boundary layer suction is an effective way to widen the stable operating range of the highly-loaded compressor cascade. The suction slot geometry is described by the suction slot width and the suction slot angle with respect to the direction normal to the blade suction surface. The results show that the flow behavior is improved and the endwall loss is reduced further as the increase of the suction slot width. The suction slot angle has an obvious influence on the pressure inside the slot, therefore, should be considered in the design of the suction slot since the maximum pressure inside the slot is usually required.


2020 ◽  
Vol 28 (03) ◽  
pp. 2050024
Author(s):  
Pravin Jadhav ◽  
Neeraj Agrawal

The flow characteristics of CO2 refrigerant are numerically studied for an adiabatic spirally coiled capillary tube employing choked flow conditions. The mass, momentum and energy conservation equations are used to develop a numerical model. The existing model is verified with the published results. The choked flow behavior at various geometric parameters viz. tube diameter and spiral pitch is studied. Similarly, the influence of these parameters on the mass flow rate through the tube is observed. A significant change in mass flow rate is due to a change in tube diameter, whereas a minimal variation is observed with the change in surface roughness and spiral pitch. Moreover, it is observed that the coiling effect has a significant influence on the flow behavior of the spiral capillary tube. As the pressure decreases, from unchoked to the choked pressure in the evaporator by 63.46%, the mass flow rate increases by 9.46% only. The capillary tube choking is circumvented by increasing spiral pitch, tube diameter and decreasing the length of the tube. A unique nomogram is developed that gives the best understanding of choked and unchoked flow conditions, that graphical representation is useful to design the spirally coiled capillary tube. By using that, the choked length is identified for the known mass flow rate, even more, the choked mass flow rate is known for a given tube length. Moreover, for the given tube length and evaporator temperature, a nomogram is useful to the known choked values of mass flow rate and exit values of the evaporator pressure and quality of refrigerant.


1998 ◽  
Vol 38 (1) ◽  
pp. 319-326
Author(s):  
Taku Fujiwara ◽  
Iso Somiya ◽  
Hiroshi Tsuno ◽  
Yoshio Okuno

The effect of the ratio of draft tube diameter to reactor diameter (Di/Do) on the efficiency of nitrogen removal from domestic sewage is discussed based on liquid-circulating flow rate and continuous treatment data. More than 2.5 minutes of circulation time in the annulus part, which is required to create an anoxic zone, could be maintained under operating conditions in which air flow rate per reactor volume was 2 m3/(m3 · hr) and Di/Do was 0.19. When Di/Do was set at 0.19, the average total organic carbon (TOC), total nitrogen (TN) and dissolved nitrogen (DN) removal efficiencies were 83.2%, 72.1% and 71.6%, respectively, which were higher than those when Di/Do was at 0.26 or 0.36. From these results, it is concluded that 0.19 is the best Di/Do for nitrogen removal in a draft-tube type reactor with an effective depth of 4.0m under the treatment condition in which the BOD volumetric loading rate is in the range 0.22 to 0.46 kgBOD/(m3 · day). More than 80% nitrification and denitrification efficiencies can be achieved simultaneously when both conditions, the aerobic zone ratio being more than 0.2, and the anoxic zone ratio being more than 0.3, are satisfied.


Author(s):  
Xiaoming Chen ◽  
Yuchuan Zhu ◽  
Travis Wiens ◽  
Doug Bitner ◽  
Minghao Tai ◽  
...  

The inertance hydraulic converter relies on fluid inertance to modulate flow or pressure and is considered to be a competitive alternative to the conventional proportional hydraulic system due to its potential advantage in efficiency. As the quantification of fluid inertance, the suction flow characteristic is the crucial performance indicator for efficiency improvement. To explore the discrepancy between the passive inertance hydraulic converter featured by the check valve and the active inertance hydraulic converter driven by an equivalent 2/3 way fast switching valve in regard to suction flow characteristics, analytical models of the inertance hydraulic converters were established in MATLAB/Simulink. The validated models of the respective suction components were incorporated in the overall analytical models and their suction flow characteristics were theoretically and experimentally discussed. The analytical predictions and experimental measurements for the current configurations indicated that the active inertance hydraulic converter yields a larger transient suction flow rate than that of the passive inertance hydraulic converter due to the difference of the respective suction components. The suction flow characteristic can be modulated using the supply pressure and duty cycle, which was confirmed by experimental measurements. In addition, the suction flow characteristics are heavily affected by the resistance of the suction flow passage and switching frequency. There is a compromise between the resistance and switching frequency for inertance hydraulic converters to achieve large suction flow rate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoshi Miyamoto ◽  
Zu Soh ◽  
Shigeyuki Okahara ◽  
Akira Furui ◽  
Taiichi Takasaki ◽  
...  

AbstractThe need for the estimation of the number of microbubbles (MBs) in cardiopulmonary bypass surgery has been recognized among surgeons to avoid postoperative neurological complications. MBs that exceed the diameter of human capillaries may cause endothelial disruption as well as microvascular obstructions that block posterior capillary blood flow. In this paper, we analyzed the relationship between the number of microbubbles generated and four circulation factors, i.e., intraoperative suction flow rate, venous reservoir level, continuous blood viscosity and perfusion flow rate in cardiopulmonary bypass, and proposed a neural-networked model to estimate the number of microbubbles with the factors. Model parameters were determined in a machine-learning manner using experimental data with bovine blood as the perfusate. The estimation accuracy of the model, assessed by tenfold cross-validation, demonstrated that the number of MBs can be estimated with a determinant coefficient R2 = 0.9328 (p < 0.001). A significant increase in the residual error was found when each of four factors was excluded from the contributory variables. The study demonstrated the importance of four circulation factors in the prediction of the number of MBs and its capacity to eliminate potential postsurgical complication risks.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 1187-1225 ◽  
Author(s):  
Nicola Massarotti ◽  
Michela Ciccolella ◽  
Gino Cortellessa ◽  
Alessandro Mauro

Purpose – The purpose of this paper is to focus on the numerical analysis of transient free convection heat transfer in partially porous cylindrical domains. The authors analyze the dependence of velocity and temperature fields on the geometry, by analyzing transient flow behavior for different values of cavity aspect ratio and radii ratio; both inner and outer radius are assumed variable in order to not change the difference ro-ri. Moreover, several Darcy numbers have been considered. Design/methodology/approach – A dual time-stepping procedure based on the transient artificial compressibility version of the characteristic-based split algorithm has been adopted in order to solve the transient equations of the generalized model for heat and fluid flow through porous media. The present model has been validated against experimental data available in the scientific literature for two different problems, steady-state free convection in a porous annulus and transient natural convection in a porous cylinder, showing an excellent agreement. Findings – For vertically divided half porous cavities, with Rayleigh numbers equal to 3.4×106 for the 4:1 cavity and 3.4×105 for the 8:1 cavity, the numerical results show that transient oscillations tend to disappear in presence of cylindrical geometry, differently from what happens for rectangular one. The magnitude of this phenomenon increases with radii ratio; the porous layer also affects the stability of velocity and temperature fields, as oscillations tend to decrease in presence of a porous matrix with lower value of the Darcy number. Research limitations/implications – A proper analysis of partially porous annular cavities is fundamental for the correct estimation of Nusselt numbers, as the formulas provided for rectangular domains are not able to describe these problems. Practical implications – The proposed model represents a useful tool for the study of transient natural convection problems in porous and partially porous cylindrical and annular cavities, typical of many engineering applications. Moreover, a fully explicit scheme reduces the computational costs and ensures flexibility. Originality/value – This is the first time that a fully explicit finite element scheme is employed for the solution of transient natural convection in partially porous tall annular cavities.


2015 ◽  
Vol 651-653 ◽  
pp. 830-835
Author(s):  
Shohei Kajikawa ◽  
Riku Sakagami ◽  
Takashi Iizuka

Thermal flow tests were performed on steamed bamboo powder using capillaries that were processed under different conditions in order to investigate the effect of the die surface state on the fluidity of the woody powder. The capillaries were processed by wire-cut electric discharge machining, reaming or drilling, and the arithmetic average roughness (Ra) varied from 0.5 to 2.5 μm. The bamboo powder was first steamed at 200 °C for 20 min, and its particle size was then controlled using different mesh screens. The thermal flow temperature was set at 200 °C. The results indicated that the flow behavior improved with increasing particle size. For the capillaries processed by WEDM, the flow rate for samples with particle sizes of 75~150 and 150~300 μm decreased with increasing Ra. On the other hand, when reaming or drilling was used to process the capillaries, the flow rate was almost independent of Ra, regardless of the particle size.


Author(s):  
Zhigang Li ◽  
Jun Li ◽  
Liming Song ◽  
Qing Gao ◽  
Xin Yan ◽  
...  

The modern gas turbine is widely applied in the aviation propulsion and power generation. The rim seal is usually designed at the periphery of the wheel-space and prevented the hot gas ingestion in modern gas turbines. The high sealing effectiveness of rim seal can improve the aerodynamic performance of gas turbines and avoid of the disc overheating. Effect of outer fin axial gap of radial rim seal on the sealing effectiveness and fluid dynamics was numerically investigated in this work. The sealing effectiveness and fluid dynamics of radial rim seal with three different outer fin axial gaps was conducted at different coolant flow rates using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and SST turbulent model solutions. The accuracy of the presented numerical approach for the prediction of the sealing performance of the turbine rim seal was demonstrated. The obtained results show that the sealing effectiveness of radial rim seal increases with increase of coolant flow rate at the fixed axial outer fin gap. The sealing effectiveness increases with decrease of the axial outer fin gap at the fixed coolant flow rate. Furthermore, at the fixed coolant flow rate, the hot gas ingestion increases with the increase of the axial outer fin gap. This flow behavior intensifies the interaction between the hot gas and coolant flow at the clearance of radial rim seal. The preswirl coefficient in the wheel-space cavity is also illustrated to analyze the flow dynamics of radial rim seal at different axial outer fin gaps.


Sign in / Sign up

Export Citation Format

Share Document