Application of Surfactant Solution for Lower Oligocene Formation, White Tiger Field

2021 ◽  
pp. 1-9
Author(s):  
Tai H. Pham ◽  
Huy X. Nguyen ◽  
Cuong T. Q. Dang ◽  
Wisup Bae ◽  
Nguyen V. K. Nguyen

Summary In this study we investigated the possibility of applying a surfactant solution for better oil recovery of the Lower Oligocene formation in the White Tiger Field. The research comprised steps ranging from optimizing the surfactant solution to coreflooding and piloting on two injection wells. The concentrations of surfactants [alkyl ether sulfonate (AES) and sodium α-olefin sulfonate (AOS)] and solvent (n-butanol) were optimized using response surface methodology with the response value set equal to the interfacial tension (IFT). The certified solution was used for conducting coreflooding, and the additional recovery factors from two sample cores were 32% original oil in place (OOIP) and 49% OOIP, respectively. Two injection wells were selected for piloting the injection and were located in White Tiger Field. These wells exhibited strong hydraulic connectivity to seven wells that were under production. The production rates in the observed wells demonstrated a significant increase after 2–3 months of surfactant injection. During the observation period, all seven producer wells showed an increment of approximately 8,475 tons of oil, accounting for approximately 21% of the cumulative oil production.

2020 ◽  
Vol 2 (1) ◽  
pp. 62-65
Author(s):  
NUR ASYRAF MD AKHIR ◽  
AFIF IZWAN ABD HAMID ◽  
ISMAIL MOHD SAAID ◽  
ANITA RAMLI

Surfactant flooding is one of the chemical enhanced oil recovery (CEOR) techniques that can be used to improve oil recovery. The surfactant injection reduces the oil-water interfacial tension and mobilizes residual oil towards the producing well. In this paper, the performance of alkyl ether carboxylate (AEC) and calcium lignosulfonate (CLS) in individual and mixed surfactant systems were investigated based on their ability to reduce the interfacial tension through a spinning drop method.   The interfacial tensions of individual and mixed surfactant systems in different brine systems were measured against decane at 25°C and 98°C. The results show that the individual and mixed surfactant systems in 3.5 wt.% NaCl brine has a significant reduction in interfacial tension at 98°C. In contrast, the presence of hardness in 2.5 wt.% NaCl and 1.0 wt.% MgCl2 brine reduces the interfacial tension of the individual AEC surfactant system and mixed surfactant system significantly at 98°C except for the individual CLS system. Meanwhile, the interfacial tension of mixed surfactant system decreases with increasing surfactant concentration in two brine systems and at 98°C. The findings show the significant application of the AEC and CLS surfactant mixture considering the harsh reservoir conditions for the chemical enhanced oil recovery application.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Yue Shi ◽  
Chammi Miller ◽  
Kishore Mohanty

Summary Carbonate reservoirs tend to be oil-wet/mixed-wet and heterogeneous because of mineralogy and diagenesis. The objective of this study is to improve oil recovery in low-temperature dolomite reservoirs using low-salinity and surfactant-aided spontaneous imbibition. The low-salinity brine composition was optimized using ζ-potential measurements, contact-angle (CA) experiments, and a novel wettability-alteration measure. Significant wettability alteration was observed on dolomite rocks at a salinity of 2,500 ppm. We evaluated 37 surfactants by performing CA, interfacial-tension (IFT), and spontaneous-imbibition experiments. Three (quaternary ammonium) cationic and one (sulfonate) anionic surfactants showed significant wettability alteration and produced 43–63% of original oil in place (OOIP) by spontaneous imbibition. At a low temperature (35°C), oil recovery by low-salinity effect is small compared with that by wettability-altering surfactants. Coreflood tests were performed with a selected low-salinity cationic surfactant solution. A novel coreflood was proposed that modeled heterogeneity and dynamic imbibition into low-permeability regions. The results of the “heterogeneous” coreflood were consistent with that of spontaneous-imbibition tests. These experiments demonstrated that a combination of low-salinity brine and surfactants can make originally oil-wet dolomite rocks more water-wet and improve oil recovery from regions bypassed by waterflood at a low temperature of 35°C.


1981 ◽  
Vol 21 (05) ◽  
pp. 573-580 ◽  
Author(s):  
J.H. Bae ◽  
C.B. Petrick

Abstract A sulfonate system composed of Stepan Petrostep TM 465, Petrostep 420, and 1-pentanol was investigated. The system was found to give ultralow interfacial tension against crude oil in a reasonable range of salinity and sulfonate concentrations. It also was found that sulfonate partitioned predominantly into the microemulsion phase. However, a significant amount also partitioned into water and, at high salinity, into the oil phase. On the other hand, the oil-soluble 1-pentanol partitioned mostly into oil and microemulsion phases.The interfacial tension between excess oil and water phases was ultralow, in the range of 10-3 mN/m. The tensions were close to and paralleled those between the middle and water phases. The trend remained the same even when the alcohol content changed. This means that in the salinity range that produces a three-phase region, below the optimal salinity, the water phase effectively displaces both oil and middle phases, even though the oil may not be displaced effectively by the middle phase. The implication is that, from an interfacial tension point of view, the oil recovery would be more favorable in the salinity range below the optimal salinity with the mixed petroleum sulfonate system used here. This was confirmed by oil recovery tests in Berea cores. It also was concluded that the change in viscosity upon microemulsion formation might have a significant influence on the surfactant flood performance. Introduction During a surfactant flood, the injected slug of surfactant solution undergoes complex changes as it traverses the reservoir. The surfactant solution is diluted by mixing with reservoir oil and brine and by depletion of surfactant due to retention. Also, the reservoir salinity rarely is the same as that of the injected solution. Moreover, there is chromatographic separation of sulfonate and cosurfactant.When phase equilibrium between oil, brine, and injected surfactant is reached in the front portion of the slug, a microemulsion phase is formed. This phase behavior and its importance in oil recovery have been the subject of numerous papers in recent years. The microemulsion phase formed in the reservoir contacts fresh reservoir brine and oil and undergoes further changes. All these changes are accompanied by property changes of the phases that affect oil recovery.The objective of this paper is to investigate the properties of a blend of commercial petroleum sulfonates and its behavior in different environments. The phase volume behavior and changes in the properties of different phases and their effects on oil recovery were studied. This work was done as part of the design of a surfactant process for a field application. Therefore, a crude oil was used as the hydrocarbon phase. Experimental Procedures A blend of Petrostep 465 and 420 from Stepan Chemical Co. was used as the surfactant. An equal weight of each sulfonate on a 100% active basis was mixed. 1-pentanol from Union Carbide Corp. was used as a cosurfactant. Unless otherwise stated, a 50g/kg sulfonate concentration was used in the solution. We used symbols to denote the formulation. The first number in the symbol indicates the 1-pentanol concentration; the last number indicates the NaCl concentration. Thus, 15 P 10 means that the solution consists of 50 g/kg sulfonate, 15 g/kg 1-pentanol, and 10 g/kg NaCl. The sulfonate blend first was mixed with alcohol, and then the required amount of NaCl brine was added to make the solution. SPEJ P. 573^


2010 ◽  
Vol 50 (2) ◽  
pp. 735

The average primary oil recovery worldwide is around 35% of the original oil in place (OOIP). Various enhanced oil recovery (EOR) approaches are generally required to recover the remaining OOIP. Apart from the reservoir properties, the capillary pressure that governs fluid distribution and displacement behavior in the reservoir is also affected by the interfacial tension and wettability. Both IFT and wettability are considered to be key effective factors that affect EOR. This study investigated the effect of reservoir brine compositions on the interfacial tension (IFT) between synthetic formation brines and an Australian crude oil with pressures and temperatures up to 4000 psi and 140 °F, respectively. A series of measurements on the density, viscosity and IFT have been conducted. The brines, with total dissolved solids ranging from 3,820 to 38,200 ppm, consist of a diverse range of ions including sodium, lithium, magnesium, calcium, bromide, chloride, sulfate, bicarbonate and carbonate. The experimental results indicate that with all the synthetic brines investigated, the IFT declines with increasing temperature and pressure. Furthermore, it was observed that the IFT reduction with temperature was dependent on the pH values of the brine. Bicarbonate, carbonate, sulfate, and magnesium ions significantly decreased the IFT by up to 40% through either lowering the free surface energy or increasing the surface area. Coreflooding experiments using low salinity water have yielded an incremental EOR of 5.4% OOIP, suggesting that wettability alteration caused by the change of ion balance in the residual water may be responsible for the observed EOR.


2014 ◽  
Vol 1004-1005 ◽  
pp. 688-691
Author(s):  
Lu Ming Jiang ◽  
Qing Zhe Jiang ◽  
Zhao Zheng Song ◽  
Xiao Xiao

We investigate six different surfactants in interfacial tension (IFT) between the surfactant solution and the crude oil from Suijng oilfield. Based on the measurement of interfacial tension, the anion surfactant Heavy alkylbenzene sulfonate (HABS) and non-ionic surfactant alkyl glycoside (APG) are selected for the formulation of mixed surfactant. The IFT between the mixed surfactant solution comprising the HABS and APG and crude oil from Suijing can be reduced to ultralow.The experimental results indicate that the selected mixed surfactant formulation (0.20%HABS+0.10%APG) has a good performance on the tolerance of temperature and salinity and the coreflood test result indicate that the effective of the formulation was high which led to significant oil recovery (56.48%TOR).


2018 ◽  
Vol 39 (2) ◽  
pp. 63-69
Author(s):  
Yani Faozani Alli ◽  
Edward ML Tobing

Microemulsion formation in surfactant solution has a major influence on the success of chemical injection techniques, and is one of the enhanced oil recovery methods. Its transparent and translucent homogenous mixtures of oil and water in the presence of surfactant have an ability to displace the remaining oil in the reservoir by reducing interfacial tension between oil and water. In this study, the effect of surfactant solution salinity on the formation of microemulsion and its mechanism to reduce the interfacial tension between water and oil from X oil field in Central Sumatera were carried out through compatibility observation, phase behaviour test and interfacial tension measurements in a laboratory. The results showed that microemulsion formation depends on the salinity of aqueous phase associated with different surfactant solubility by altering the polar area of surfactant. The optimum salinity was obtained with the addition of 0.65% Na2CO3 in which microemulsion was formed and the solubilization ratio of oil and water were equally high. At this condition the ultralow interfacial tension was around 10-3 dyne/cm and enabled improved oil recovery in mature oil fields after waterflooding


1980 ◽  
Vol 20 (06) ◽  
pp. 459-472 ◽  
Author(s):  
G.P. Willhite ◽  
D.W. Green ◽  
D.M. Okoye ◽  
M.D. Looney

Abstract Microemulsions located in a narrow single-phase region on the phase diagram for the quaternary system consisting of nonane, isopropyl alcohol, Witco TRS 10-80 petroleum sulfonate, and brine were used to investigate the effect of phase behavior on displacement efficiency of the micellar flooding process. Microemulsion floods were conducted at reservoir rates in 4-ft (1.22-m) Berea cores containing brine and residual nonane. Two floods were made using large (1.0-PV) slugs. A third flood used a 0.1-PV slug followed by a mobility buffer of polyacrylamide. Extensive analyses of the core effluents were made for water, nonane, alcohol, and mono- and polysulfonates. An oil bank developed which broke through at 0.08 to 0.1 PV, and 48 to 700/0 of the oil was recovered in this bank which preceeded breakthrough of monosulfonate and alcohol. Coincidental with the arrival of these components of the slug, the effluent became a milky white macroemulsion which partially separated upon standing. Additional oil was recovered with the macroemulsion. Ultimate recoveries were 90 to 100% of the residual oil. Low apparent interfacial tension was observed between the emulsion and nonane. Alcohol arrived in the effluent at the same time as monosulfonate even though there was extensive adsorption of the sulfonate. Further, alcohol appeared in the effluent well after sulfonate production had ceased, indicating retention of the alcohol in the core. A qualitative model describing the displacement process was inferred from the appearance of the produced fluids and the analyses of the effluents. Introduction Surfactant flooding (micellar or microemulsion) is one of the enhanced oil recovery methods being developed to recover residual oil left after waterflooding. Two approaches to surfactant flooding have evolved in practice. In one, relatively large volumes (0.25 PV) of low-concentration surfactant solution are used to create low-tension waterfloods.1,2 Oil is mobilized by reduction of interfacial tension to levels on the order of about 10−3 dyne/ cm (10−3 mN/m). The second approach involves the application of small volumes (0.03 to 0.1 PV) of high-concentration solutions.3,4 These solutions are miscible to some extent with the formation water and/or crude oil. Consequently, miscibility between the surfactant solution and oil and/or low interfacial tensions contribute to the oil displacement efficiency. The relative importance of these mechanisms has been the subject of several papers5,6 and discussions.7,8


SPE Journal ◽  
2014 ◽  
Vol 20 (01) ◽  
pp. 60-69 ◽  
Author(s):  
Leizheng Wang ◽  
Kishore Mohanty

Summary Gas-aided gravity drainage is a common oil-recovery technique in anticline-shaped oil reservoirs. If the permeability is low and the reservoir is oil-wet, the remaining oil saturation can be quite high. The goal of this work is to mobilize a part of this oil by surfactant injection. An anionic-surfactant formulation was developed to alter wettability and lower interfacial tension (IFT) for a gasflooded, carbonate reservoir. Different coreflood strategies, including gas/water/surfactant/water (GWSW), gas/surfactant/gas (GSG), gas/surfactant/water (GSW), and gas/surfactant/water/gas (GSWG) floods, were investigated. GSG, GWSW, and GSWG corefloods conducted in limestone cores recovered an additional 40–50% of the original oil in place (OOIP) because of the injection of surfactant. GSW corefloods conducted in a vuggy dolomite recovered less: an approximately 20%-of-OOIP incremental recovery. Numerical simulation was used to match GSG and GSW corefloods and estimate multiphase-flow functions. A 2D conceptual simulation model using these functions was built for an anticline reservoir for gas and surfactant-solution injection. GSG flooding using wettability-altering surfactant exhibited high oil recovery at the field scale. IFT reduction, wettability alteration, and foam formation contributed to enhanced oil recovery (EOR).


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3135
Author(s):  
Fabiola D. S. Curbelo ◽  
Alfredo Ismael C. Garnica ◽  
Danilo F. Q. Leite ◽  
Amanda B. Carvalho ◽  
Raphael R. Silva ◽  
...  

Over time, oil production in a reservoir tends to decrease, which makes it difficult to flow through the reservoir to the well, making its production increasingly difficult and costly. Due to their physical properties, such as reducing the water/oil interfacial tension, surfactants have been used in enhanced oil recovery (EOR) processes, however, their adsorption presents as an undesirable and inevitable factor and can decrease the efficiency of the method. This work’s main objective is to evaluate the effect of glycerol in the adsorption of surfactants in sandstones, as well as in the recovery factor during EOR. Brine solutions containing the nonionic surfactant saponified coconut oil (SCO), with and without glycerol, were used in the adsorption and oil recovery tests in sandstone. Adsorption, recovery, rheological, and thermogravimetric analysis were carried out. Regarding the surfactant/glycerol/brine solution, there was an improvement in the oil mobility, as the glycerol contributed to an increase in the viscosity of the solution, thereby increasing the sweep efficiency. The recovery factor obtained for the surfactant solution with glycerol was satisfactory, being 53% higher than without glycerol, because it simultaneously provided an increase in viscosity and a decrease in interfacial tension, both of which are beneficial for the efficiency of the process.


1978 ◽  
Vol 18 (06) ◽  
pp. 409-417 ◽  
Author(s):  
D.T. Wasan ◽  
S.M. Shah ◽  
N. Aderangi ◽  
M.S. Chan ◽  
J.J. McNamara

Original manuscript received in Society of Petroleum Engineers office Sept. 20, 1977. Paper accepted for publication June 2, 1978. Revised manuscript received Aug. 2, 1978. Paper (SPE 6846) was presented at SPE-AIME 52nd Annual Fall Technical Conference and Exhibition, held in Denver, Oct. 9-12, 1977. Abstract Results of experiments on the coalescence of crude oil drops at an oil-water interface and interdroplet coalescence in crude oil-water emulsions containing petroleum sulfonates and cosurfactant as surfactant systems with other chemical additives were analyzed in terms of interracial viscosity, interfacial tension, interfacial charge, and thickness of the films surrounding the microdroplets. A qualitative correlation was found between coalescence rates and interfacial viscosities; however, there appears to be no direct correlation with interfacial tension. New insight has been gained into the influence of emulsion stability in tertiary oil recovery by surfactant/polymer flooding in laboratory core tests. We concluded that those systems that result in relatively stable emulsions yield poor coalescence rates and, hence, poor oil recovery, Introduction The ability of the surfactant/polymer system to initiate and to propagate an oil bank is the single most important feature of a successful tertiary oil-recovery process. The mechanisms of oil-bank formation and development are yet unknown. It has been suggested that without the initiation of the oil bank, the process behaves more like the unstable injection of a surfactant solution alone, where the oil is produced by entrainment or emulsification in the flowing surfactant stream. In a laboratory study of the initial displacement of residual hydrocarbons by aqueous surfactant solutions, Childress and Schechter and Wade observed that those systems that spontaneously emulsified and coalesced rapidly yielded better oil recovery than those systems that spontaneously formed stable emulsions. Recently, Strange and Talash, Whitley and Ware, and Widmeyer et al. reported results of Salem (IL) low-tension, water-flood tests that used Witco TRS 10-80 TM petroleum sulfonate surfactant solution. They found stable oil-in-water emulsions at the observer well in addition to emulsion problems at the production well and reported that problems at the production well and reported that actual oil recovery was about one-quarter the target value. These studies clearly suggested that poor efficiency of oil recovery results from emulsion stability problems in the low-tension surfactant or micellar processes. Vinatieri presented results of experiments on the stability of crude-oil-in-water emulsions that coo be produced during a surfactant or micellar flood. More recently, we have assessed the rigidity of interfacial films and its relationship to coalescence rate through measurements of interfacial viscosities of crude oils contacted against aqueous solutions containing various concentrations of surfactants and other pertinent chemical additives. Our data clearly indicate that in the absence of a commercial surfactant, interfacial viscosity builds up rapidly, coalescence is inhibited, and the resulting emulsion is quite stable. These phenomena also have been observed by Gladden and Neustadter. Several studies were conducted on the structure of film-forming material at the crude oil/water interface, its effect on emulsion stability, and the role of such films in oil recovery by water or caustic solution displacements. Rigid films were found to reduce the amount of oil recovered. Our studies also have shown that the addition of a commercial surfactant lowered both the interfacial viscosity (ISV) and interfacial tension (IFT) of the crude oil-aqueous solution system. However, the concentration at which both the IFT and ISV are minimized cannot be identified by measuring IFT alone. We have conducted a cinephotomicrographic examination of spontaneous emulsification and a microvisual study of the displacement of residual crude oil by aqueous surfactant solutions in micromodel porous media. SPEJ P. 409


Sign in / Sign up

Export Citation Format

Share Document