Solving the Problem of Operational Accounting of Well Drilling Results in a Full-Scale Model of Unique Gas Condensate Fields

2021 ◽  
Author(s):  
Andrey Viktorovich Poushev ◽  
Ruslan Railievich Mangushev ◽  
Sergey Anatolievich Yakimov

Abstract Today, strategic planning of field development is based on full-field static and flow simulation models which are regularly updated as part of field surveillance programs and by integrating the actual results of drilling and testing of new production and exploration wells and integrated interpretation of seismic surveys and reservoir core and fluid laboratory analyses. One of the key factors for the success of investment projects is how quick and flexible the decision-making process is. Therefore, in modern conditions, prompt integration of new data into full-field flow simulation models followed by their processing, analysis, and decision-making on adjusting the strategic goals is of particular relevance for oil and gas production companies. For unique multi-reservoir fields containing dozens of reservoirs, hundreds of accumulations and wells, it is hardly possible to promptly update full-field static and flow simulation models within less than 6-12 months, therefore, the decisions are made in the absence of up-to-date models, which may lead to poor quality of production forecasts. The purpose of the study was to develop an approach to the modeling of unique fields, which would allow prompt integration of new data in a full-field flow simulation model while keeping the level of detail without significant time input.

2021 ◽  
Vol 21 (3) ◽  
pp. 147-161
Author(s):  
Lucia Maria de Araujo Lima Gaudencio ◽  
Rui de Oliveira ◽  
Wilson Fadlo Curi

Production units located in the Brazilian marine environment are responsible for the production of 95.7% of oil and 78.8% of natural gas of Brazil causing economic, environmental, and social impacts motivating us to construct a system of indicators as a tool aimed to improve the sustainable management practice of these production units. To date, one of the tools most used by the oil industry is the sustainability report, oriented by guidelines from international organizations. However, these reports have a corporate character being unable to help the sustainability management of production units’ activities. The indicators were selected based on a systemic approach, using current knowledge on sustainability indicators, together with the survey of aspects relevant to the operation and management of offshore oil and gas production units. This paper describes the proposed indicators and presents the hierarchical structure of the system, built on the economic, environmental, social, and operational dimensions. The application of the proposed system of indicators, based on multicriterial and multiple decision-making analyses, validates a complex decision process, providing improved sustainable management of offshore production units by identifying points for which the necessary measures and actions can be implemented. Keywords: offshore oil and gas production; sustainability indicators; multicriteria and multiple decision-making analyses.


2018 ◽  
pp. 11-20 ◽  
Author(s):  
Yu. V. Vasilev ◽  
D. A. Misyurev ◽  
A. V. Filatov

The authors created a geodynamical polygon on the Komsomolsk oil and gas condensate field to ensure the industrial safety of oil and gas production facilities. The aim of its creation is mul-tiple repeated observations of recent deformation processes. Analysis and interpretation of the results of geodynamical monitoring which includes class II leveling, satellite observations, radar interferometry, exploitation parameters of field development provided an opportunity to identify that the conditions for the formation of recent deformations of the earth’s surface is an anthropogenic factor. The authors identified the relationship between the formation of subsidence trough of the earth’s surface in the eastern part of the field with the dynamics of accumulated gas sampling and the fall of reservoir pressures along the main reservoir PK1 (Cenomanian stage).


2017 ◽  
Vol 10 (1) ◽  
pp. 37-47
Author(s):  
Qingsha Zhou ◽  
Kun Huang ◽  
Yongchun Zhou

Background: The western Sichuan gas field belongs to the low-permeability, tight gas reservoirs, which are characterized by rapid decline in initial production of single-well production, short periods of stable production, and long periods of late-stage, low-pressure, low-yield production. Objective: It is necessary to continue pursuing the optimization of transportation processes. Method: This paper describes research on mixed transportation based on simplified measurements with liquid-based technology and the simulation of multiphase processes using the PIPEPHASE multiphase flow simulation software to determine boundary values for the liquid carrying process. Conclusion: The simulation produced several different recommendations for the production and maximum multiphase distance along with difference in elevation. Field tests were then conducted to determine the suitability of mixed transportation in western Sichuan, so as to ensure smooth progress with fluid metering, optimize the gathering process in order to achieve stable and efficient gas production, and improve the economic benefits of gas field development.


2021 ◽  
Author(s):  
Aamir Lokhandwala ◽  
Vaibhav Joshi ◽  
Ankit Dutt

Abstract Hydraulic fracturing is a widespread well stimulation treatment in the oil and gas industry. It is particularly prevalent in shale gas fields, where virtually all production can be attributed to the practice of fracturing. It is also used in the context of tight oil and gas reservoirs, for example in deep-water scenarios where the cost of drilling and completion is very high; well productivity, which is dictated by hydraulic fractures, is vital. The correct modeling in reservoir simulation can be critical in such settings because hydraulic fracturing can dramatically change the flow dynamics of a reservoir. What presents a challenge in flow simulation due to hydraulic fractures is that they introduce effects that operate on a different length and time scale than the usual dynamics of a reservoir. Capturing these effects and utilizing them to advantage can be critical for any operator in context of a field development plan for any unconventional or tight field. This paper focuses on a study that was undertaken to compare different methods of simulating hydraulic fractures to formulate a field development plan for a tight gas field. To maintaing the confidentiality of data and to showcase only the technical aspect of the workflow, we will refer to the asset as Field A in subsequent sections of this paper. Field A is a low permeability (0.01md-0.1md), tight (8% to 12% porosity) gas-condensate (API ~51deg and CGR~65 stb/mmscf) reservoir at ~3000m depth. Being structurally complex, it has a large number of erosional features and pinch-outs. The study involved comparing analytical fracture modeling, explicit modeling using local grid refinements, tartan gridding, pseudo-well connection approach and full-field unconventional fracture modeling. The result of the study was to use, for the first time for Field A, a system of generating pseudo well connections to simulate hydraulic fractures. The approach was found to be efficient both terms of replicating field data for a 10 year period while drastically reducing simulation runtime for the subsequent 10 year-period too. It helped the subsurface team to test multiple scenarios in a limited time-frame leading to improved project management.


2017 ◽  
Vol 107 (4) ◽  
pp. 1313-1334 ◽  
Author(s):  
James Feyrer ◽  
Erin T. Mansur ◽  
Bruce Sacerdote

We track the geographic and temporal propagation of local economic shocks from new oil and gas production generated by hydrofracturing. Each million dollars of new production produces $80,000 in wage income and $132,000 in royalty and business income within a county. Within 100 miles, one million dollars of new production generates $257,000 in wages and $286,000 in royalty and business income. Roughly two-thirds of the wage income increase persists for two years. Assuming no general equilibrium effects, new extraction increased aggregate US employment by as many as 640,000, and decreased the unemployment rate by 0.43 during the Great Recession. (JEL D86, L14, L81, L82)


Author(s):  
Michael Choi ◽  
Andrew Kilner ◽  
Hayden Marcollo ◽  
Tim Withall ◽  
Chris Carra ◽  
...  

To avoid making billion dollar mistakes, operators with discoveries in deepwater (∼3,000m) Gulf of Mexico (GoM) need dependable well performance, reservoir response and fluid data to guide full-field development decisions. Recognizing this need, the DeepStar consortium developed a conceptual design for an Early Production System (EPS) that will serve as a mobile well test system that is safe, environmentally friendly and cost-effective. The EPS is a dynamically positioned (DP) Floating, Production, Storage and Offloading (FPSO) vessel with a bundled top tensioned riser having quick emergency disconnect capability. Both oil and gas are processed onboard and exported by shuttle tankers to local markets. Oil is stored and offloaded using standard FPSO techniques, while the gas is exported as Compressed Natural Gas (CNG). This paper summarizes the technologies, regulatory acceptance, and business model that will make the DeepStar EPS a reality. Paper published with permission.


2021 ◽  
Author(s):  
Margot Hurlbert

Abstract This article reports research results from two day deliberative focus groups in three Saskatchewan communities addressing power production planning, in the context of climate change and sustainability. Mixed methods included pre and post-focus group surveys, coding and analysis of discussions, and the creation by each focus group of a strategy for sustainable power production in the future. Results of comparative case study analysis provide strong support for renewables and illustrate place based differences.All communities strongly supported wind, solar and hydroelectricity. Estevan, located in the south of the province in proximity to coal, oil and gas production and coal power generating plants supported coal, and coal with carbon capture and storage (CCS). Saskatoon (situate in the middle of the province) and Regina (the center of government and between the other two) stressed the importance of engaging the public in decision making, education, providing information, and the importance that all costs, risk, benefits across the entire lifespan of the power production source be considered. In contrast, Estevan was concerned about the cost implications of power production source choice across the entire socio-economic system, including the social cost of job loss on the welfare system. Public participation in decision making in Estevan was not a priority. The reflexivity of the focus groups in Estevan brought closer together divergent views and increased support for coal and coal with CCS.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Liu Jian-jun ◽  
Yu Xian-bin ◽  
Zhao Jin-zhou

Geostress evolution in the process of oil field development can directly influence wellbore stability. Therefore, it is significant to strengthen the research of the evolution rule for well drilling and casing protection. Considering the interaction between reservoir seepage and stress fields, a mathematical model to characterize the stress evolution around wellbore was built. Using the FEM Software ABAQUS, through numerical simulation, the authors studied the evolution features of pore pressure and stress changes with time under different injection-production ratio, which disclosed the dynamic change regulation of pore pressure and stress of surrounding rock nearby the injection and production wells. These results may have implications in the treatment of wellbore stability and optimizing the injection and production processes during oil and gas production.


Sign in / Sign up

Export Citation Format

Share Document