Dynamic Drilling Fluid Invasion Petrophysical Modeling and Corrections in the Presence of Gas Reservoirs - Arab Formation, UAE

2021 ◽  
Author(s):  
Cesar Portilla ◽  
Javier Moreno

Abstract Drilling fluid (mud) invasion occurs when the liquid component of the fluid (mud filtrate) invades porous and permeable formations caused by the differential pressure between the wellbore and formation fluids. Changes to the fluid distribution near the wellbore region affects logging tool response, especially those with shallow depths of investigation. The Arab formation in UAE exhibits different degrees of invasion primarily observed in the nuclear and resistivity measurements. This study utilizes tool physics, rock properties, logging time information, and drilling fluid properties, to model invasion corrected log responses and estimate accurate petrophysical properties. Drilling mud filtrate invasion is observed significantly in all wells drilled in the Arab formation in UAE, affecting both wireline and LWD logging tools. Most of the pilot vertical wells appear to be at residual saturations near the wellbore, where drilling mud filtrate invaded deep into the formation and the radial zones near the wellbore are expected to be completely flushed by the filtrate. Drilling mud invasion in the laterals appears to happen early during the drilling phase affecting LWD tool as well, and the measurement becomes function of the time after drilled, affecting mostly nuclear measurements (density and neutron). Clear understanding of the mud filtrate invasion is required to obtain valid petrophysical interpretations. To characterize these effects, two invasion indexes are estimated and used as inputs for the petrophysical model. Results are then validated with the use of Nuclear Modeling and Resistivity Inversion by the use of the SNUPAR (McKeon et al, 1988)(Edmundson, H., and Raymer, L.L., 1979)(Wiley, R., and Patchett, J.G., 1990) and UTAPWeLS (Jesus and Carlos, 2009) (Alberto and Carlos, 2010) (Alberto, Carlos and Bill, 2010) (Shaaban, David, and Carlos, 2017) (David, Joaquin and Carlos, 2019). Individual models are created to evaluate pilot vertical wells and horizontal laterals, as well as pure theoretical models are put forward to demonstrate the importance of performing corrections for mud filtrate invasion, showing the differences particularly in the nuclear responses.

2011 ◽  
Vol 415-417 ◽  
pp. 629-632 ◽  
Author(s):  
Jie Zhang ◽  
Gang Chen ◽  
Nai Wang Yang ◽  
Yang Guang Wang

Sodium hydroxymethyl lignosulfonate (NaHLS) was prepared by hydroxymethylation of sodium lignosulfonate (NaLS) and formaldehyde to enhance the performance as drilling fluids additive. The performances of the modified drilling fluid with NaLS and NaHLS, such as rheology behavior, filtration reducer and inhibitive ability were evaluated. The results indicate that the NaHLS can enhance the viscosity at low temperature, reduce the viscosity after ageing under 180 °C, which is more effective than that of NaLS. And NaHLS reduces the filtration, as the thickness of the modified fluid mud-cake is much thinner than that of NaLS. Besides, the inhibitive ability of NaHLS for clay hydrous disintegration is more effective than that of NaLS. The properties make NaHLS a potentially effective drilling mud additive.


2021 ◽  
Author(s):  
Anna Vladimirovna Norkina ◽  
Sergey Mihailovich Karpukhin ◽  
Konstantin Urjevich Ruban ◽  
Yuriy Anatoljevich Petrakov ◽  
Alexey Evgenjevich Sobolev

Abstract The design features and the need to use a water-based solution make the task of ensuring trouble-free drilling of vertical wells non-trivial. This work is an example of an interdisciplinary approach to the analysis of the mechanisms of instability of the wellbore. Instability can be caused by a complex of reasons, in this case, standard geomechanical calculations are not enough to solve the problem. Engineering calculations and laboratory chemical studies are integrated into the process of geomechanical modeling. The recommendations developed in all three areas are interdependent and inseparable from each other. To achieve good results, it is necessary to comply with a set of measures at the same time. The key tasks of the project were: determination of drilling density, tripping the pipe conditions, parameters of the drilling fluid rheology, selection of a system for the best inhibition of clay swelling.


2021 ◽  
Vol 66 (05) ◽  
pp. 192-195
Author(s):  
Rövşən Azər oğlu İsmayılov ◽  

The aricle is about the pipe stick problems of deep well drilling. Pipe stick problem is one of the drilling problems. There are two types of pipe stick problems exist. One of them is differential pressure pipe sticking. Another one of them is mechanical pipe sticking. There are a lot of reasons for pipe stick problems. Indigators of differential pressure sticking are increase in torque and drug forces, inability to reciprocate drill string and uninterrupted drilling fluid circulation. Key words: pipe stick, mecanical pipe stick,difference of pressure, drill pipe, drilling mud, bottomhole pressure, formation pressure


2020 ◽  
pp. 70-74
Author(s):  
V.V. Guliyev ◽  
◽  
◽  

Currently, a great number of drilling fluids with different additives are used all over the world. Such additives are applied to control the properties of the drilling mud. The main purpose for controlling is to achieve more effective and safe drilling process. This research work aims to develop Water-Based Mud (WBM) with a Coefficient of Friction (CoF) as low as Oil-Based Mud (OBM) and better rheological properties. As it is known, produced CoF by WBM is higher than OBM, which means high friction between wellbore or casing and drill string. It was the reason for studying the effect of nanosilica on drilling fluid properties such as lubricity, rheological parameters and filtrate loss volume of drilling mud. The procedures were carried out following API RP 13B and API 13I standards. Five concentrations of nanosilica were selected to be tested. According to the results obtained, it was defined that adding nanosilica into the mud decreases CoF of basic WBM by 26 % and justifies nanosilica as a good lubricating agent for drilling fluid. The decreasing trend in coefficient of friction and plastic viscosity for nanosilica was obtained until the concentration of 0.1 %. This reduction is due to the shear thinning or pseudoplastic fluid behavior. After 0.1 %, an increase at PV value trend indicates that it does not follow shear thinning behavior and after reaching a certain amount of dissolved solids in the mud, it acts like normal drilling fluid. The yield point of the mud containing nanoparticles was higher than the basic one. Moreover, a growth in the concentration leads to an increase in yield point value. The improvement of this fluid system cleaning capacity via hydraulics modification and wellhole stability by filter cake endurance increase by adding nanosilica is shown as well. The average well construction data of “Neft Dashlary” field was used for the simulation studies conducted for the investigation of hydraulics parameters of reviewed fluids for all series of experiments. The test results were accepted reliable in case of at least 3 times repeatability.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
David Ekuma ◽  
Ikechukwu Okafor ◽  
Innocent Nweze

Abstract Drilling fluid are complex fluids consisting of several additives. These additives are added to enhance and control the rheological properties (such as viscosity, gel strength and yield point) of the mud. These properties are controlled for effective drilling of a well. This research work is focused on determining the rheological behavior of drilling mud using industry-based polymer and Irvingia Gabonensis (ogbono) as viscosifiers. Water based muds were formulated from the aforementioned locally sourced viscosifier and that of the conventional used viscosifier (Carboxylmetyl cellulose, CMC). Laboratory tests were carried out on the different muds formulated and their rheological properties (such as yield stress, shear stress, plastic viscosity and shear rate) are evaluated. The concentration of the viscosifiers were varied. The expected outcome of the research work aims at lowering the total drilling cost by reducing the importation of foreign polymer which promotes the development of local content in the oil and gas industry. The research compares the rheology of mud samples and the effect of varying the concentration (2g, 4g, 6g, 8g, and 10g) of both CMC and Ogbono and determining the changes in their rheological properties. The total volume of each mud sample is equivalent to 350ml which represent one barrel (42gal) in the lab. From the result, at concentration of 2g, the ogbono mud has a better rheology than the CMC mud, but at a concentration above 2g, CMC mud shows a better rheology than ogbono mud, that is, as the concentration of CMC is increased, the rheological properties of the mud increased while as the concentration of ogbono is increased the rheological properties decreased. The viscosity of the drilling fluid produced from the ogbono were lower than that of CMC, it could be used together with another local product such as cassava starch, offor or to further improve the rheology and then be a substitute to the conventional viscosifiers.


Author(s):  
Tinku Saikia ◽  
Vikas Mahto

The formation of gas hydrates in oil & gas pipelines and drilling fluid flow lines is a major issue in the petroleum industry. Gas hydrate inhibitors are normally used to inhibit the formation of gas hydrates in the pipelines/flowlines. Initial screening of hydrate inhibitors and AntiAgglomerants (AA) requires a safe and economical experimental setup/method. Conventional visual method was used for initial screening of hydrate inhibitors in many researches. Some researchers also suggested modified visual methods, but all of them lacks accurate measurement of induction time and found to be inappropriate for experimental solutions like drilling mud, etc. In this work, a temperature augmented visual method was presented which can be used in academic research laboratories for study and initial screening of hydrate inhibitors. This method is capable of parallel screening of inhibitors and determines hydrate induction time precisely. Experiments were conducted to determine the hydrate induction time of different inhibitors using augmented method and compared with conventional visual method. The developed method found to be more precise in determining the induction time of hydrates in all types of experimental solutions.


Author(s):  
S H Mok ◽  
D G Gorman

Maintenance of offshore drilling mud pumps is normally based on running hours. It is generally accepted, however, that time does not provide an accurate means of scheduling maintenance, given the varying operating conditions of the reciprocating mud pumps. The energy expended at the interaction of sliding surfaces is hypothesized to be a better alternative. The effects of operating variables on wear rates are investigated. A Taguchi experimental design was used to identify those factors that significantly affect wear. Within the confines of an experimental test rig, the normal load and abrasive sand content was found to have a significant effect on the specific wear rate of nitrile rubber sliding on steel in drilling fluid.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


2007 ◽  
Vol 4 (1) ◽  
pp. 103 ◽  
Author(s):  
Ozcan Baris ◽  
Luis Ayala ◽  
W. Watson Robert

The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified) fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow. 


Sign in / Sign up

Export Citation Format

Share Document