Extending ESP Run Life By Reducing Shutdowns and Improving Restarts Using Novel Pump Protection Technology

2021 ◽  
Author(s):  
Salvador Duran ◽  
Mike Plooy ◽  
Ashu Dikshit ◽  
Amrendra Kumar ◽  
Ehab Abo Deeb ◽  
...  

Abstract Meeting the production demand in today's market without sacrificing performance of the artificial lift method is critical. Aggressive flowback procedures lead to solids production and unplanned electric submersible pump (ESP) shutdowns because of solids overload. A novel pump protection system has been designed, tested, and installed in the field. The system enhances the ESP life, improves restarts, and reduces downhole vibrations and unplanned shutdown by controlling the solids flowback and sending solids-buildup pressure signals. A comparative study on three ESP wells in the Delaware basin (US) demonstrated the efficacy of the system. The system comprises of an intake sand control screen and valve assembly. The novel stainless steel wool screen acts as a three dimensional (3D) filter capable of filtering out particles of 15 to 600 μm, and the valve assembly activated by differential pressure across the screen creates a secondary flow path to allow cyclic cleanup of the screen. Stainless steel wool screen with variable pore sizes is used as the sand control media for its high efficiency in preventing the flow of most of the solid particles. When the solids build up on the screen surface, the valve assembly opens upon reaching a preset differential pressure to enable flow past the screens and into the ESP and allows sands deposited on the screen surface to fall off. The pump protection assembly was tested at surface and installed in three wells along with downhole ESP gauges measuring pressure, temperature and vibrations after pulling out existing ESP completions. Qualification testing confirmed the opening of the valve assembly after solids buildup on the stainless steel wool screen. It also validated that the deposited sand fell-off from the screen surface after flow diverted through the valve assembly and pressure differential across screen dropped. In the field installations, the run life of the ESPs improved by an average of 35%, with comparable production volumes and slow drawdowns. In addition, the number of ESP shutdowns related to sand and solids was reduced by as much as 75%, improving longevity of electrical components. The success rate of ESP startups after planned and unplanned shutdowns also improved by 22%. The increase in inlet pressure captured via the downhole gauges when the valve assembly opened indicated the sand control prevention and mitigation system was bridged, and ESP replacement should be scheduled to minimize deferred production from a solids-induced ESP failure and to minimize surface solids management costs. The vibration signal data obtained from downhole sensors confirmed the reliability of the system. Overall, results demonstrate that the system designed is successful at increasing ESP run life without detriment to well production performance. The new, field-proven pump protection system along with its components and the completion design substantially increase life of ESP by reducing the number of shutdowns related to sand overload, reducing shutdowns, reducing overall vibrations, increasing the probability of successful start after shut-in, and increasing the performance reliability during fracturing of a neighboring well. Consequently, more wells that are looking to increase the ESP life can now benefit from this technology and increase output.

2000 ◽  
Vol 65 (5-6) ◽  
pp. 445-450 ◽  
Author(s):  
Scepan Miljanic ◽  
Natasa Stjepanovic ◽  
Milan Trtica

There is a growing interest in laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. The main mechanism of cleaning by lasers is ablation. Apulsed TEACO2 laser was used in this work for surface cleaning in order to show that ablation of metal surfaces is possible even at relatively low pulse energies, and to suggest that it could be competitive with other lasers because of much higher energy efficiencies. A brief theoretical analysis was made before the experiments. The laser beam was focused using a KBr-lens onto a surface contaminated with 137 Cs (b-, t1/2 = 30.17 y). Three different metals were used: stainless steel, copper and aluminium. The ablated material was pumped out in an air atmosphere and transferred to a filter. The presence of activity on the filter was shown by a germanium detector-multichannel analyzer. The activity levels were measured by a GM counter. The calculated decontamination factors and collection factors showed that ablation occurs with a relatively high efficiency of decontamination. This investigation suggests that decontamination using a CO2 laser should be seriously considered.


Solar Energy ◽  
2021 ◽  
Vol 230 ◽  
pp. 1033-1039
Author(s):  
Chen Zhang ◽  
Tongqing Qi ◽  
Wei Wang ◽  
Chenchen Zhao ◽  
Shuda Xu ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 183 ◽  
Author(s):  
Meiling Xu ◽  
Shumei Kang ◽  
Jinlin Lu ◽  
Xinyong Yan ◽  
Tingting Chen ◽  
...  

PEMFC are considered to be the most promising for automotive energy because of their good working effect, low temperature, high efficiency, and zero pollution. Stainless steel as a PEMFC bipolar plate has unparalleled advantages in strength, cost, and processability, but it is easy to corrode in a PEMFC working environment. In order to improve the corrosion resistance, the surface modification of 316L stainless steel is a feasible solution for PEMFC bipolar plates. In the present study, the plasma-nitrided coating and CrNx coating were prepared by the plasma-enhanced balanced magnetron sputtering technology on the 316L stainless steel surface. The microstructures, phase compositions, and corrosion resistance behavior of the coatings were investigated. The corrosion behavior of the prepared plasma-nitrided coating and CrNx coating was investigated by potentiodynamic polarization, potentiostatic polarization, and electrochemical impedance spectroscopy (EIS) in both cathodic and anodic environments. The experimental results show that corrosion resistance of the CrNx coating was better than the plasma-nitrided coating. It was indicated that the technology process of nitriding first and then depositing Cr was better than nitriding only.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1069 ◽  
Author(s):  
Fahd Saeed Alakbari ◽  
Mysara Eissa Mohyaldinn ◽  
Ali Samer Muhsan ◽  
Nurul Hasan ◽  
Tarek Ganat

The chemical sand consolidation methods involve pumping of chemical materials, like furan resin and silicate non-polymer materials into unconsolidated sandstone formations, in order to minimize sand production with the fluids produced from the hydrocarbon reservoirs. The injected chemical material, predominantly polymer, bonds sand grains together, lead to higher compressive strength of the rock. Hence, less amounts of sand particles are entrained in the produced fluids. However, the effect of this bonding may impose a negative impact on the formation productivity due to the reduction in rock permeability. Therefore, it is always essential to select a chemical material that can provide the highest possible compressive strength with minimum permeability reduction. This review article discusses the chemical materials used for sand consolidation and presents an in-depth evaluation between these materials to serve as a screening tool that can assist in the selection of chemical sand consolidation material, which in turn, helps optimize the sand control performance. The review paper also highlights the progressive improvement in chemical sand consolidation methods, from using different types of polymers to nanoparticles utilization, as well as track the impact of the improvement in sand consolidation efficiency and production performance. Based on this review, the nanoparticle-related martials are highly recommended to be applied as sand consolidation agents, due to their ability to generate acceptable rock strength with insignificant reduction in rock permeability.


1996 ◽  
Vol 452 ◽  
Author(s):  
P. Pemet ◽  
M. Goetz ◽  
H. Keppner ◽  
A. Shah

AbstractThe <p> μc-SiC:H / <i> a-Si:H junction can be considered to be a sub-system of a n/i/p solar cell. Optimised performance of this junction can be assumed to be a key feature for obtaining high efficiency solar cells.In this paper the authors present results on the conductivity of boron doped microcrystalline hydrogenated silicon (<p> μc-Si:H) thin films deposited on amorphous substrates (e.g. glass or glass/<i> a-Si:H). It is shown that, without any treatment of the substrate or of the underlying surface, the <p> layers showed a strongly reduced conductivity. This indicates either a bad nucleation or a poor microcrystalline behaviour. By using an appropriate surface treatment of the substrate, a gain in photoconductivity of about three orders of magnitude could be obtained (σ > 3 S/cm at a layer thickness of 400Å). We conclude from this, that for thin <p> type μc-Si:H layers the nucleation conditions are essential for obtaining best electric properties of the film w.r.t. solar cell performance.Based on these results, interface treatment was successfully implemented in n/i/p solar cells deposited on TCO coated glass and stainless steel. The results of these experiments are also presented.


2014 ◽  
Vol 556-562 ◽  
pp. 1087-1091
Author(s):  
Shi Bin Wang ◽  
Ri Hui Chen ◽  
Xiang Yun Meng

Venturi scrubber is a high-efficiency wet dust collector,and has a high capture efficiency for small solid particles. Applied to metal mines, the venturi scrubber not only eliminate the mine dust in the processes of mining and driving, but also can capture the diesel exhaust particles effectively in theory. Then the air in the mine has been purified and the staff can keep away from the harm of mine dust and diesel exhaust particles. Based on the results of this research from the predecessor, the paper design a reasonable set of pilot programs for mine workers.


2014 ◽  
Vol 592-594 ◽  
pp. 1498-1502 ◽  
Author(s):  
T. Mothilal ◽  
K. Pitchandi

Effect of mass flow rate of inlet gas on holdup mass in a high efficiency cyclone has been performed. Cyclone as heat transfer equipment may be used for drying, solidification, water removal, solvent recovery, sublimation, chemical reaction and oxidation. In all such cases, performance of cyclone depends on the surface area of the solid particles inside the cyclone. The holdup varies with the variation in operating parameters. This proposed work will present an effect of mass flow rate of inlet gas on cyclone heat exchanger and calculation of holdup mass by varying the mass flow rate of inlet gas, solid feed rate and diameter of the particle.


2019 ◽  
pp. 152808371986693
Author(s):  
Kyung Chul Sun ◽  
Jung Woo Noh ◽  
Yeong Og Choi ◽  
Sung Hoon Jeong ◽  
Yeon Sang Kim

As development of industrialization grows constantly, the purification of hazardous solid particles and ions is one of the most important topics in environment and ecosystem. In this report, we designed and developed a novel and advanced type of filter media for the removal of both solid particles and hazardous ions, we choose Cs+ and Ca2+ here, by enclosing zeolite in wet-laid nonwoven media. The performance of the prepared filter media was evaluated by continuous sorption experiments, which were followed by solid particles and ion-removal efficiency studies. The prepared filter media showed excellent uniformity. The prepared filter media exhibited a solid removal efficiency rate which ranged from 80 to 82%, and the initial removal efficiency of ions exceeded 99%. These values are in effect as the main layer in the completed liquid filter media and for the next step to prepare the completed multi-layered liquid filter units. The results here suggest that this novel filter media can be used in high-efficiency and multi-functional liquid filter units for residential and industrial engineering.


Sign in / Sign up

Export Citation Format

Share Document