Assessment of Sweep Efficiency and Breakthrough Using CO2, H2O, Carbon and Hydrogen Isotope Composition in a Water Alternating with Gas EOR Project in Onshore Abu Dhabi, UAE

2021 ◽  
Author(s):  
Dr. Syed Asif Ahsan ◽  
Reem Ali Mabkhout AlSeiari ◽  
Dr. Tamer Koksalan ◽  
Yatindra Bhushan

Abstract Measuring sweep efficiency and understanding breakthrough are the most important parameters to assess an Enhanced Oil Recovery (EOR) project having Water Alternating with miscible CO2 Gas (WAG) injection. The objective of this study was to use CO2, H2O and isotope compositions to assess sweep efficiency and breakthrough in producer wells in an ADNOC Onshore field in order to take the necessary actions for project optimization (e.g., injector and/or future producer well location optimization). CO2 and H2O compositions, along with their respective carbon and hydrogen isotopes, was integrated with downhole pressure gauge data to evaluate the impact of WAG operation on EOR. It was understood at the start of the project that an isotopically distinct injected CO2, compared to the oil associated CO2, would assist in the evaluation of sweep efficiency and breakthrough. The injected CO2 used in the WAG comes from a steel mill that is isotopically very distinct (i.e., significantly light) from the oil associated CO2. CO2 and H2O are injected periodically in the reservoir through designated injectors distributed over the field. The initially produced oil associated CO2, H2O, carbon and hydrogen isotope values were available as reference to measure the extent of sweep efficiency and breakthrough. Injected H2O and CO2 compositions and their respective hydrogen and carbon isotope values are measured at each injection cycle (so called campaigns). This is then followed by periodic compositional and isotopic measurements of the same components in oil and water producer wells to measure the extent of breakthrough. CO2, H2O composition and carbon and hydrogen isotope measurements in injector and producer wells indicate that the injected CO2 is preferentially breaking through in certain parts of the field. This indicates heterogeneous reservoir quality distribution throughout the field with better reservoir quality (e.g. higher permeability) between injector and producer wells having faster breakthrough. The compositional and isotopic measurements are sensitive enough to register compositional changes in the producer wells relatively faster than assessed by downhole pressure gauges.

2021 ◽  
Author(s):  
Bogdan-George Davidescu ◽  
Mathias Bayerl ◽  
Christoph Puls ◽  
Torsten Clemens

Abstract Enhanced Oil Recovery pilot testing aims at reducing uncertainty ranges for parameters and determining operating conditions which improve the economics of full-field deployment. In the 8.TH and 9.TH reservoirs of the Matzen field, different well configurations were tested, vertical versus horizontal injection and production wells. The use of vertical or horizontal wells depends on costs and reservoir performance which is challenging to assess. Water cut, polymer back-production and pressures are used to understand reservoir behaviour and incremental oil production, however, these data do not reveal insights about changes in reservoir connectivity owing to polymer injection. Here, we used consecutive tracer tests prior and during polymer injection as well as water composition to elucidate the impact of various well configurations on sweep efficiency improvements. The results show that vertical well configuration for polymer injection and production leads to substantial acceleration along flow paths but less swept volume. Polymer injection does not only change the flow paths as can be seen from the different allocation factors before and after polymer injection but also the connected flow paths as indicated by a change in the skewness of the breakthrough tracer curves. For horizontal wells, the data shows that in addition to acceleration, the connected pore volume after polymer injection is substantially increased. This indicates that the sweep efficiency is improved for horizontal well configurations after polymer injection. The methodology leads to a quantitative assessment of the reservoir effects using different well configurations. These effects depend on the reservoir architecture impacting the changes in sweep efficiency by polymer injection. Consecutive tracer tests are an important source of information to determine which well configuration to be used in full-field implementation of polymer Enhanced Oil Recovery.


2021 ◽  
Author(s):  
Mohd Ghazali Abd Karim ◽  
Wahyu Hidayat ◽  
Alzahrani Abdulelah

Abstract The objective of this paper is to investigate the effects of interfacial tension dependent relative permeability (Kr_IFT) on oil displacement and recovery under different gas injection compositions utilizing a compositional simulation model. Oil production under miscible gas injection will result in variations of interfacial tension (IFT) due to changes in oil and gas compositions and other reservoir properties, such as pressure and temperature. Laboratory experiments show that changes in IFT will affect the two-phase relative permeability curve (Kr), especially for oil-gas system. Using a single relative permeability curve during the process from immiscible to miscible conditions will result in inaccurate gas mobility against water, which may lead to poor estimation of sweep efficiency and oil recovery. A synthetic sector compositional model was built to evaluate the effects of this phenomenon. Several simulation cases were investigated over different gas injection compositions (lean, rich and CO2), fluid properties and reservoir characterizations to demonstrate the impact of these parameters. Simulation model results show that the application of Kr_IFT on gas injection simulation modelling has captured different displacement behavior to provide better estimation of oil recovery and identify any upside potential.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 950
Author(s):  
Francy Guerrero ◽  
Jonathan Bryan ◽  
Apostolos Kantzas

This study aims to develop a visual understanding of the macro-displacement mechanisms associated with heavy oil recovery by water and chemical flooding in a 2D system. The sweep efficiency improvements by water, surfactant, polymer, and surfactant-polymer (SP) were evaluated in a Hele-Shaw cell with no local pore-level trapping of fluids. The results demonstrated that displacement performance is highly correlated to the mobility ratio between the fluids. Surfactant and water reached similar oil recovery values at similar mobility ratios; however, they exhibited different flow patterns in the 2D system—reductions in IFT can lead to the formation of emulsions and alter flow pathways, but in the absence of porous media these do not lead to significant improvements in oil recovery. Polymer flooding displayed a more stable front and a higher reduction in viscous fingering. Oil recovery by SP was achieved mostly by polymer rather than due to the effect of the surfactant. The surfactant in the SP slug washed out residual oil in the swept zone without increasing the swept area. This shows the impact of the surfactant on reducing the oil saturation in water-swept zones, but the overall oil recovery was still controlled by the injection of polymer. This study provides insight into the fluid flow behavior in diverging flow paths, as opposed to linear core floods that have limited pathways. The visualization of bulk liquid interactions between different types of injection fluids and oil in the Hele-Shaw cell might assist in the screening process for new chemicals and aid in testing the production process.


2019 ◽  
Vol 797 ◽  
pp. 385-392
Author(s):  
Abd Rahman Hasrizal ◽  
Najmiddin Yaakob

Some of the enhanced oil recovery (EOR) techniques involve injection of polymer brine in the formation. Addition of polymer increases the viscosity causing improved sweep efficiency owing to favorable mobility factor. Microbial induced corrosion (MIC) is caused by growth of certain bacterial species in the pipeline system and the reservoir. There is possibility of MIC to occur along the water injection schemes. Sea water is considered bereft of nutrients not allowing much bacterial activity but some sessile consortia may grow on internal line surface and cause corrosion. When the sea water is injected into the formation some anaerobic consortia dominated by sulfate reducing bacteria (SRB) grow in the formation. These bacteria use oxygen present in sulfate for respiration and volatile fatty acids (VFAs) as carbon source. But after some time of water injection the formation may get depleted of VFAs thwarting bacterial growth. This study was taken up to understand impact of EOR polymer on growth of bacterial consortium. A bacterial consortia labelled as consortia II from ATCC which is tough oilfield bacteria consortia was allowed to grow with VFA (lactate or acetate), in absence of VFA and in presence of 1000 ppm of HPAM polymer. Planktonic and sessile counts were monitored over 40 days period. Results from this study showed, microbes utilized the polymer as their secondary nutrient, whenever their preferred nutrient was depleted or insufficient. SRB sessile count which was 102 cells/cm2 in nutrient depleted medium picked up a value of 106 cells/cm2 in presence of polymer. It was observed that the bacteria first utilize the available VFA source, after that a period of lull for about 5 days followed before the growth being picked up.


2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 61-68
Author(s):  
Dong Zhang ◽  
Jian Guang Wei ◽  
Run Nan Zhou

AbstractActive-polymer attracted increasing interest as an enhancing oil recovery technology in oilfield development owing to the characteristics of polymer and surfactant. Different types of active functional groups, which grafted on the polymer branched chain, have different effects on the oil displacement performance of the active-polymers. In this article, the determination of molecular size and viscosity of active-polymers were characterized by Scatterer and Rheometer to detect the expanded swept volume ability. And the Leica microscope was used to evaluate the emulsifying property of the active-polymers, which confirmed the oil sweep efficiency. Results show that the Type I active-polymer have a greater molecular size and stronger viscosity, which is a profile control system for expanding the swept volume. The emulsification performance of Type III active-polymer is more stable, which is suitable for improving the oil cleaning efficiency. The results obtained in this paper reveal the application prospect of the active-polymer to enhance oil recovery in the development of oilfields.


2021 ◽  
pp. 014459872098020
Author(s):  
Ruizhi Hu ◽  
Shanfa Tang ◽  
Musa Mpelwa ◽  
Zhaowen Jiang ◽  
Shuyun Feng

Although new energy has been widely used in our lives, oil is still one of the main energy sources in the world. After the application of traditional oil recovery methods, there are still a large number of oil layers that have not been exploited, and there is still a need to further increase oil recovery to meet the urgent need for oil in the world economic development. Chemically enhanced oil recovery (CEOR) is considered to be a kind of effective enhanced oil recovery technology, which has achieved good results in the field, but these technologies cannot simultaneously effectively improve oil sweep efficiency, oil washing efficiency, good injectability, and reservoir environment adaptability. Viscoelastic surfactants (VES) have unique micelle structure and aggregation behavior, high efficiency in reducing the interfacial tension of oil and water, and the most important and unique viscoelasticity, etc., which has attracted the attention of academics and field experts and introduced into the technical research of enhanced oil recovery. In this paper, the mechanism and research status of viscoelastic surfactant flooding are discussed in detail and focused, and the results of viscoelastic surfactant flooding experiments under different conditions are summarized. Finally, the problems to be solved by viscoelastic surfactant flooding are introduced, and the countermeasures to solve the problems are put forward. This overview presents extensive information about viscoelastic surfactant flooding used for EOR, and is intended to help researchers and professionals in this field understand the current situation.


Sign in / Sign up

Export Citation Format

Share Document