Chemical Analyses of Brines From Four Imperial Valley, CA, Geothermal Wells

1980 ◽  
Vol 20 (02) ◽  
pp. 105-112 ◽  
Author(s):  
P.B. Needham ◽  
W.D. Riley ◽  
G.R. Conner ◽  
A.P. Murphy

Abstract A brief report is given of studies of brine chemistry on both high- and low-salinity geothermal fields in support of a field corrosion testing program being conducted by the USBM in the Imperial Valley, CA. Specific results are reported for four geothermal wells: Mesa 6–1, Mesa 6–2, Magmamax No. 1, and Woolsey No. 1. These results demonstrate the necessity for careful reporting of the specific well operating conditions and brine sampling techniques under which the brine analyses were obtained. In particular, information related to recent well shut-in particular, information related to recent well shut-in periods, total stabilization time, recent production periods, total stabilization time, recent production engineering, brine flow rate from the well, and identification of nonturbulent-structure brine-flow configurations must be documented carefully with any reported analyses. Introduction For the past several years, the USBM has been involved in the nation's geothermal program, with primary responsibility for developing technology for primary responsibility for developing technology for recovering important metals and minerals from geothermal brines. Because the most accessible U.S. geothermal mineral resources occur in extremely corrosive hydrothermal fluids, the bureau also has conducted research to identify construction materials for process plants designed to recover these resources.The largest identified geothermal resource area in the U.S. containing substantial quantities of potentially recoverable metals and minerals is in the potentially recoverable metals and minerals is in the Imperial Valley. Of six known geothermal resource areas (KGRA's) there, the Salton Sea KGRA contains brines with the highest mineral content - 25 to 32% total dissolved solids (TDS). The brines from the Salton Sea KGRA, however, are among the most singularly corrosive natural fluids to be found, and during any type of brine processing a wide range of scaling phenomena occurs that can create havoc within a geothermal resource recovery plant. Early attempts to recover these geothermal resources were abandoned, partly due to the failure to overcome these corrosion and scaling problems.This paper presents on-site brine chemical analyses for the early stages of production for four geothermal wells and discusses how these analyses can be influenced by operational conditions. In addition to specifying the analytical and sampling procedures used for geothermal brine analyses, a procedures used for geothermal brine analyses, a number of important conditions concerning the geothermal well in question must be specified for meaningful interpretation of the analytical data. Much of the data reported in the literature does not include this type of information, thus limiting its value. These conditions, defined here as the "reportable conditions for geothermal brine chemistry data," are (1) sampling procedure (to include temperature, pressure, date, type of sampling port, and either suspected or known phase of the port, and either suspected or known phase of the preextracted sample - i.e., brine, steam, or mixed preextracted sample - i.e., brine, steam, or mixed phases), (2) total flow rate from the well (in volume phases), (2) total flow rate from the well (in volume per time interval), (3) shut-in time (if well is being per time interval), (3) shut-in time (if well is being restarted after a period of nonflow), (4) total operating time (of actual brine-flowing operations), (5) production engineering (including any recent perforation, recasing, or bottomhole extension), and perforation, recasing, or bottomhole extension), and (6) variations in baseline chemistry (to distinguish between average operating values and unique well conditions or to specify unusual brine flow patterns).These six points are essential for meaningful comparisons of the brine compositions of different wells, the variations in brine chemistry with time for a single well, and the sampling and analytical results for brines from the same well obtained by different organizations. SPEJ P. 105

Author(s):  
F. Z. Sierra ◽  
A. Adamkowski ◽  
G. Urquiza ◽  
J. Kubiak ◽  
H. Lara ◽  
...  

The Gibson method utilizes the effect of water hammer phenomenon (hydraulic transients) in a pipeline for flow rate determination. The method consists in measuring a static pressure difference, which occurs between two cross-sections of the pipeline as a result of a temporal change of momentum from t0 to t1. This condition is induced when the water flow in the pipeline is stopped suddenly using a cut-off device. The flow rate is determined by integrating, within a proper time interval, the measured pressure difference change caused by the water hammer (inertia effect). However, several observations demonstrate that changes of pipeline geometry like diameter change, bifurcations, or direction shift by elbows may produce an effect on the computation of the flow rate. The paper focuses on this effect. Computational simulations have shown that the boundary layer separates when the flow faces sudden changes like these mentioned to above. The separation may reduce the effective cross section area of flow modifying a geometry factor involved into the computation of the flow rate. The remainder is directed to quantify the magnitude of such a factor under the influence of pipeline geometry changes. Results of numerical computations are discussed on the basis of how cross section reductions impact on the geometry factor magnitude and consequently on the mass flow rate.


2021 ◽  
Author(s):  
Alexey Ruzhnikov ◽  
Edgar Echevarria

Abstract Carbonate formations around the world and specifically in a Middle East are prone to have total losses while drilling. And the nature of the losses often related to the highly fractured formations of the pay zone. When such fracture(s) is crossed by the wellbore the lost circulation initiated and led to a drilling without a return to a surface. To avoid undesired well control event or wellbore instability and to maintain the constant bottom hole pressure the mud cap drilling strategy often used as a preventative measure. The mud cap can be either the continuous or based on some volume or time interval, depends on the local practices or the policy of an operator. The mud cap flow rate as well as mud cap mud weight are often based on the best practices, not supported by an engineering study. To understand the behavior of the drilling fluid level in the annulus while drilling with total losses the drilling bottom hole assembly equipped with annular pressure while drilling tool was used. As the drilling required to use the continuous mud cap, then the specific guideline was developed on measurement of the bottom hole pressure and further conversion of it to the fluid level. The study was performed across pay zone with one or several loss circulation zones identified. As the result it was confirmed that the used mud cap flow rate had minor to none effect on the fluid level position in the annulus and that the bottom hole pressure remained the same. It showed as well that different loss zones are behaving in a different way, what can be considered as a factor affecting their ability to be sealed. The obtained knowledge and the information should help to understand better the loss circulation behavior as well be an important step toward development of the product which may cure the losses in high fractured carbonate formations. The results of the study can be implemented in any other project or a field.


2010 ◽  
Vol 53 (2) ◽  
pp. 455-463 ◽  
Author(s):  
Ana Maria Frattini Fileti ◽  
Gilvan Anderson Fischer ◽  
Elias Basile Tambourgi

A pulsed-cap microcolumn was used for bromelain extraction from pineapple juice by reversed micelles. The cationic micellar solution used BDBAC as the surfactant, isooctane as the solvent and hexanol as the co-solvent. In order to capture the dynamic behavior and the nonlinearities of the column, the operating conditions were modified in accordance with the central composite design for the experiment, using the ratio between the light phase flow rate and the total flow rate, and the time interval between pulses. The effects on the purification factor and on total protein yield were modeled via neural networks. The best topology was defined as 16-9-2, and the input layer was a moving window of the independent variables. The neural model successfully predicted both the purification factor and the total protein yield from historical data. At the optimal operating point, a purification factor of 4.96 and a productivity of 1.29 mL/min were obtained.


1999 ◽  
Vol 121 (1) ◽  
pp. 1-13 ◽  
Author(s):  
M. Popescu ◽  
T. K. Ghosh

Solid-desiccant dehumidifiers are increasingly becoming an integral part of desiccant based air-conditioning systems because of their effective handling of latent heat loads compared to conventional vapor compression units. In these units, either a silica gel or a molecular sieve is used for dehumidification of air. Both of them have the capability to co-adsorb various chemical pollutants during dehumidification of air. However, the shape of the isotherm for water vapor on these materials is not favorable for desiccant cooling applications. A mixture (IM desiccant) containing a silica gel, a molecular sieve, and a hydrophobic molecular sieve that was coated on an aluminum foil was studied for its capability for simultaneous removal of moisture and some selected pollutants from air. Experimental data were obtained in a fixed bed adsorber that simulated the operation of a rotary desiccant wheel. Air to be dehumidified and cleaned and the hot regeneration air were cycled in a specific time interval through this bed. The shape of the water isotherm on IM desiccant was found to be in between that of silica gel and molecular sieve 13×, but its uptake capacity was significantly lower than that of either silica gel or molecular sieve. A flow rate of about 100 L/min that provided a face velocity of about 132 cm/s was used in the adsorption step. The flow rate during regeneration was about 50 L/min. The temperature of the inlet air was about 23°C and its relative humidity was varied between 20 percent and 80 percent. The concentrations of pollutants were as follows; carbon dioxide: 1050 and 2300 ppm; toluene: 32 ppm; 1,1,1-trichloroethane: 172 ppm, and formaldehyde: 0.35 ppm. A complete breakthrough of all the pollutants was observed during an adsorption cycle. However, a removal efficiency greater than 50 percent for these pollutants was observed if the adsorption cycle time was about 1 minute.


Author(s):  
Sheng Hui Fu ◽  
Zhen- Feng Ding

Abstract The microwave breakdown power (Pwb) in an ECR plasma source was not merely determined by pressure (gas flow rate), but found to vary with the time interval between two successive breakdowns. The measured Pwb dropped rapidly from a high value at a short time interval to a low level at a long time interval. The obtained dependence of Pwb on pressure (gas flow rate) exhibited distinct features: the normal monotonicity and abnormal non-monotonicity at the short and long time intervals, respectively. The effective zone in the antenna’s surface bombarded by hot electrons heated in the ECR layer was validated by (1) masking the antenna with a film having a variable radius; (2) calculating the distribution of the vertical component of the microwave electric field with respect to the static magnetic field; (3) imaging glows of transient breakdown discharges with a fast camera. The reduction in Pwb was mainly attributed to the enhanced emission of δ-electrons from the gas-adsorbed antenna under the bombardment of energetic electrons coming from the ECR layer.. The correlation between the dynamic gas coverage and the coefficient emission of δ-electrons was established to understand the abnormal ECR breakdown features.


2020 ◽  
pp. 60-64
Author(s):  
R. A. Korneev ◽  
A. R. Tukhvatullin ◽  
V. A. Fafurin ◽  
R. R. Nigmatullin ◽  
A. V. Shchelchkov

The publication presents an experimental method for estimating the minimum time interval for filling a storage tank with a working fluid with a fixed geometry of the nozzle of the flow switch of the calibration plant when playing units of mass and volume of fluid in the flow, mass and volumetric flow rates of the fluid. Experimental studies were performed in a wide range of mass flow rate 11,10–83,26 kg/s (40–300 t/h) with repeated static weighing of the working fluid. The flow switch is made with a fixed geometry of the flow part of the nozzle exit, which is typical for a large number of calibration units in use in our country with weighing devices. The graphical dependences of the mass flow rate on the time of filling the storage capacity obtained from the research results are the basis for optimizing the process of reproducing units of mass and volume of liquid in the flow, mass and volumetric flow rates of the liquid for calibration plants with weighing devices. These graphical dependencies made it possible to formulate recommendations on the reasonable choice of the minimum interval for filling the storage tank with working fluid in the studied range of mass flow rate. Optimization has been tested and can be extended to calibration units with weighing devices from various manufacturers with individual design and operating parameters.


Sign in / Sign up

Export Citation Format

Share Document