The Impact of Nanoparticles Adsorption and Transport on Wettability Alteration of Intermediate Wet Berea Sandstone

Author(s):  
Shidong Li ◽  
Ole Torsæter

AbstractNanoparticles as part of nanotechnology have drawn the attention for its great potential of increasing oil recovery. From authors' previous studies (Li et al., 2013a), wettability alteration was proposed as one of the main Enhanced Oil Recovery (EOR) mechanisms for nanoparticles fluid, as adsorption of nanoparticles on pore walls leads to wettability alteration of reservoir. We conducted a series of wettability measurement experiments for aged intermediate-wet Berea sandstone, where the core plugs were treated by different concentration and type of nanoparticles fluid. Nanoparticles transport experiments also were performed for core plugs with injection of varying concentration and type of nanoparticles fluid. Pressure drop across the core plug during injection was recorded to evaluate nanoparticles adsorption and retention inside core, as well as desorption during brine postflush. Both hydrophilic silica nano-structure particles and hydrophilic silica colloidal nanoparticles were utilized in above two experiments.The results of wettability alteration experiments indicated that hydrophilic nanoparticles have ability of making intermediate-wet Berea sandstone to be more water wet, and basically the higher concentration the more water wet will be. And different type of nanoparticles has different effect on the wettability alteration process. For nanoparticles transport experiments, the results showed that the nanoparticles undergo both adsorption and desorption as well as retention during injection. Pressure drop curves showed that absorption and retention of nano-structure particles inside core was significant while colloidal nanoparticles did not adsorb much. Permeability impairment was observed during nano-structure particles fluid injection, but on the contrary colloidal nanoparticles dispersion injection made core more permeable.

SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 1784-1802 ◽  
Author(s):  
Sepideh Veiskarami ◽  
Arezou Jafari ◽  
Aboozar Soleymanzadeh

Summary Recent investigations have shown that treatment with injected brine composition can improve oil production. Various mechanisms have been suggested to go through the phenomenon; nevertheless, wettability alteration is one of the most commonly proposed mechanisms in the literature. Wettability alteration of the porous media toward a more favorable state reduces the capillary pressure, consequently contributing to the oil detachment from pore walls. In this study, phase behavior, oil recovery, and wettability alteration toward a more favorable state were investigated using a combination of formulations of surfactant and modified low-salinity (LS) brine. Phase behaviors of these various formulations were examined experimentally through observations on relative phase volumes. Experiments were performed in various water/oil ratios (WORs) in the presence of two different oil samples, namely C1 and C2. These experiments were conducted to clarify the impact of each affecting parameter; in particular, the impact of resin and asphaltene of crude oil on the performance of LS surfactant (LSS) flooding. Hereafter, the optimal formulation was flooded into the oil-wet micromodel. Optimum formulations increased the capillary number more than four orders of magnitude higher than that under formation brine (FB) flooding, thus causing oil recovery rates of 61 and 67% for oil samples C1 and C2, respectively. Likewise, the wettability alteration potential of optimized formulations was studied through contact angle measurements. Results showed that LS and LSS solutions could act as possible wettability alternating methods for oil-wet carbonate rocks. Using the optimum formulation resulted in a wettability alteration index (WAI) of 0.66 for sample C1 and 0.49 for sample C2, while using LS brine itself ended in 0.51 and 0.29 for oil samples C1 and C2, respectively.


1983 ◽  
Vol 55 (3) ◽  
pp. 923-928 ◽  
Author(s):  
J. H. Linehan ◽  
C. A. Dawson

The venous occlusion experiments provide sufficient data to permit the vascular bed of a dog lung lobe to be mathematically modeled as three serial compartments, each containing a quantifiable resistance separated by equal parallel compliances. To determine how these compartments are related to the sites of vasomotion in the pulmonary vascular bed we investigated the effects of various pulmonary vasomotor stimuli. We found that serotonin, sympathetic nerve stimulation, hypoxia, and prostaglandin F2 alpha increased the pressure drop upstream (arterial) from the site of major lobar compliance. On the other hand, histamine, norepinephrine, epinephrine, and elevation of the cerebrospinal fluid pressure increased the pressure drop downstream (venous) from the site of major lobar compliance. These stimuli either did not affect the pressure drop across the middle compartment or increased it slightly. Thus we conclude that the middle compartment represents vessels located between the muscular arteries and veins including the capillary bed and possibly other small nonmuscular vessels. Further, the average preocclusion pressure in the middle compartment is a microvascular pressure that can be used to evaluate the impact of vasoconstriction on the lobar microcirculation.


2018 ◽  
Vol 58 (1) ◽  
pp. 51 ◽  
Author(s):  
Tammy Amirian ◽  
Manouchehr Haghighi

Low salinity water (LSW) injection as an enhanced oil recovery method has attracted much attention in the past two decades. Previously, it was found that the presence of clay such as kaolinite and water composition like the nature of cations affect the enhancement of oil recovery under LSW injection. In this study, a pore-scale visualisation approach was developed using a 2D glass micromodel to investigate the impact of clay type and water composition on LSW injection. The glass micromodels were coated by kaolinite and illite. A meniscus moving mechanism was observed and the oil–water interface moved through narrow throats to large bodies, displacing the wetting phase (oil phase). In the presence of kaolinite, the effect of LSW injection was reflected in the change to the wettability with a transition towards water-wetness in the large sections of the pore walls. The advance of the stable water front left behind an oil film on the oil-wet portions of pore walls; however, in water-wet surfaces, the interface moved towards the surface and replaced the oil film. As a result of wettability alteration towards a water-wet state, the capillary forces were not dominant throughout the system and the water–oil menisci displaced oil in large portions of very narrow channels. This LSW effect was not observed in the presence of illite. With regard to the water composition effect, systems containing divalent cations like Ca2+ showed the same extent of recovery as those containing only monovalent ions. The observation indicates a significant role of cation exchange in wettability alteration. Fines migration was insignificant in the observations.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Mukhtar Elturki ◽  
Abdulmohsin Imqam

Summary Gas-enhanced oil recovery is one of the most advantageous enhanced oil recovery methods. Nitrogen is one of the most investigated gases because of its beneficial properties. However, during its interaction with crude oil, nitrogen can induce asphaltene deposition, which may result in severe formation damage and pore plugging. Few works have investigated the impact of nitrogen on asphaltene instability. This research studied the immiscibility conditions for nitrogen in nanopores and the impact of nitrogen on asphaltene precipitations, which could lead to plugging pores and oil recovery reduction. A slimtube was used to determine the minimum miscibility pressure (MMP) of nitrogen to ensure that all the experiments would be carried out below the MMP. Then, filtration experiments were conducted using nanofilter membranes to highlight the impact of the asphaltene particles on the pores of the membranes. A special filtration vessel was designed and used to accommodate the filter paper membranes. Various factors were investigated, including nitrogen injection pressure, temperature, nitrogen mixing time, and pore size heterogeneity. Supercritical phase nitrogen was used during all filtration experiments. Visualization tests were implemented to observe the asphaltene precipitation and deposition mechanism over time. Increasing the nitrogen injection pressure resulted in an increase in the asphaltene weight percent in all experiments. Decreasing the pore size of the filter membranes resulted in an increase in the asphaltene weight percent. Greater asphaltene weight percents were observed with a longer nitrogen mixing time. Visualization tests revealed that asphaltene clusters started to form after 1 hour and fully deposited after 12 hours in the bottom of the test tubes. Chromatography analysis of the produced oil confirmed that there was a reduction in the heavy components and asphaltene weight percent. Microscopy and scanning electron microscopy (SEM) imaging of the filter paper membranes found that significant pore plugging resulted from asphaltene deposition and precipitation. This research investigated asphaltene precipitation and deposition during immiscible nitrogen injection to understand the main factors that impact the success of using such a technique in unconventional shale reservoirs.


2021 ◽  
Author(s):  
Mukhtar Elturki ◽  
Abdulmohsin Imqam

Abstract Minimum miscibility pressure (MMP) is a critical parameter when undergoing miscible gas injection operations for enhanced oil recovery (EOR). Miscibility has become a major term in designing the gas injection process. When the miscible gas contacts the reservoir oil, it causes changes in the basic oil properties, affecting reservoir oil composition and equilibrium conditions. Changes in conditions may also favor flocculation and deposition of organic solids, mainly asphaltene, which were previously in thermodynamic equilibrium. The main purpose of this study is to investigate how the most important parameters, such as oil temperature and oil viscosity, could affect the nitrogen (N2) MMP and the instability of asphaltene aggregation. Three sets of experiments were conducted: first, the determination of MMP was performed using a slim-tube packed with sand. The impact of crude oil viscosity using 32, 19, and 5.7 cp; and temperature using 32, 45, and 70 °C, were investigated. The results showed that the N2 MMP decreased when crude oil temperature increased. The temperature is inversely proportional to the N2 MMP due to the N2 remaining in a gaseous phase at the same conditions. In terms of viscosity, the MMP for N2 was found to decrease with the reduction in oil viscosity. Second, the effect of miscibility N2 injection pressure on asphaltene aggregation using 750 psi (below miscible pressure) and 1500 psi (at miscible pressure) was investigated using a specially designed filtration vessel. Various filter membrane pores sizes were placed inside the vessel to highlight the effect of asphaltene molecules on plugging the unconventional pore structure. The results demonstrated that increasing the pressure increased asphaltene weight percentage. The asphaltene weight percent was higher when using miscible injection pressure compared to immiscible injection pressure. Also, the asphaltene weight percentage increased when the pore size structure decreased. Finally, the visualization of asphaltene deposition over time was conducted, and the results showed that asphaltene particles started to precipitate after 2 hours. After 12 hours, the colloidal asphaltenes were fully precipitated.


2020 ◽  
Vol 10 (12) ◽  
pp. 4152 ◽  
Author(s):  
Muhammad Tahir ◽  
Rafael E. Hincapie ◽  
Leonhard Ganzer

This paper uses a combination of approaches to evaluate the viscoelastic phenomenon in high-molecular-weight polymers (24–28 M Daltons) used for enhanced oil recovery (EOR) applications. Rheological data were cross-analyzed with single- and two-phase polymer flooding experiments in outcrop cores and micromodels, respectively. First, the impact of semi-harsh conditions (salinity, hardness, and temperature) was evaluated. Second, the impact of polymer degradation (sand face flow), focusing on the viscoelastic properties, was investigated. Finally, polymer viscoelastic properties were characterized, proposing a threefold rheological approach of rotational, oscillatory, and elongational behavior. Data from the rheological approaches were cross-analyzed with core flooding experiments and performed at a room temperature of 22 °C and at a higher temperature of 55 °C. The change in polymer viscoelastic properties were analyzed by investigating the effluents from core flooding experiments. Oil recovery experiments in micromodel helped our understanding of whether salinity or hardness has a dominating impact on in situ viscoelastic polymer response. These approaches were used to study the impact of mechanical degradation on polymer viscoelasticity. The brines showed notable loss in polymer viscoelastic properties, specifically with the hard brine and at higher temperature. However, the same polymer solution diluted in deionized water exhibited stronger viscoelastic properties. Multiple flow-behaviors, such as Newtonian, shear thinning, and thickening dominated flow, were confirmed through pressure drop analysis against interstitial velocity as already reported by other peer researchers. Turbulence-dominated excessive pressure drop in porous media was calculated by comparing core flood pressure drop data against pressure data in extensional viscometer–rheometer on a chip (eVROC®). In addition, a significant reduction in elastic-dominated flow was confirmed through the mechanical degradation that happened during core flood experiments, using various approaches. Finally, reservoir harsh conditions (high temperature, hardness, and salinity) resulted in a significant reduction in polymer viscoelastic behavior for all approaches.


SPE Journal ◽  
2012 ◽  
Vol 17 (04) ◽  
pp. 1172-1185 ◽  
Author(s):  
D.. Xing ◽  
B.. Wei ◽  
W.. McLendon ◽  
R.. Enick ◽  
S.. McNulty ◽  
...  

Summary Several commercially available and a few experimental, nonionic surfactants were identified that are capable of dissolving in carbon dioxide (CO2) in dilute concentration at typical minimum- miscibility-pressure (MMP) conditions and, upon mixing with brine in a high-pressure windowed cell, stabilizing CO2-in-brine foams. These slightly CO2-soluble, water-soluble surfactants include branched alkylphenol ethoxylates, branched alkyl ethoxylates, a fatty-acid-based surfactant, and a predominantly linear ethoxylated alcohol. Many of the surfactants were between 0.02 to 0.06 wt% soluble in CO2 at 1,500 psia and 25°C, and most demonstrated some capacity to stabilize foam. The most- stable foams observed in a high-pressure windowed cell were attained with branched alkylphenol ethoxylates, several of which were studied in high-pressure small-angle-neutron-scattering (HP SANS) tests, transient mobility tests using Berea sandstone cores, and high-pressure computed-tomography (CT)-imaging tests using polystyrene cores. HP SANS analysis of foams residing in a small windowed cell demonstrated that the nonylphenol ethoxylate SURFONIC® N-150 [15 ethylene oxide (EO) groups] generated emulsions with a greater concentration of droplets and a broader distribution of droplet sizes than the shorter-chain analogs with 9–12 ethoxylates. The in-situ formation of weak foams was verified during transient mobility tests by measuring the pressure drop across a Berea sandstone core as a CO2/surfactant solution was injected into a Berea sandstone core initially saturated with brine; the pressure-drop values when surfactant was dissolved in the CO2 were at least twice those attained when pure CO2 was injected into the same brine-saturated core. The greatest mobility reduction was achieved when surfactant was added both to the brine initially in the core and to the injected CO2. CT imaging of CO2 invading a polystyrene core initially saturated with 5 wt% KI brine indicated that despite the oil-wet nature of this medium, a sharp foam front propagated through the core, and CO2 fingers that formed in the absence of a surfactant were completely suppressed by foams formed because of the addition of nonylphenol ethoxylate surfactant to the CO2 or the brine.


Sign in / Sign up

Export Citation Format

Share Document