scholarly journals Antimicrobial Resistance of Escherichia coli and Salmonella isolated from Raw Retail Broiler Chickens in Zambia

2019 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract Background Antimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries like Zambia. This study was undertaken to determine the resistance profiles of Escherichia coli ( E. coli ) and Salmonella isolated from dressed broiler chickens purchased from open markets and supermarkets in Zambia.Results A total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates was done using Analytical Profile Index (API 20E) (Biomerieux ® ) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 different antibiotics and multiplex PCR was used to determine the presence of three target genes encoding for resistance: tetA, Sul1 and CTXM. AST results were entered and analyzed in WHONET 2018 software. A total of 189 E. coli and five Salmonella isolates were identified. Among the E. coli isolates, Tetracycline recorded the highest resistance of 79.4%, followed by Ampicillin 51.9%, Trimethoprim/Sulfamethoxazole 49.7%, Nalidixic Acid 24.3%, Chloramphenicol 16.4%, Cefotaxime 16.4%, Ciprofloxacin 10.1%, Colistin 7.4%, Amoxicillin/Clavulanic acid 6.9%, and Imipenem 1.1%. Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the isolates possessed at least one of the targeted resistance genes.Conclusion This study has demonstrated the presence of AMR E. coli and Salmonella on raw broiler chickens from both open markets and supermarkets. Such resistance is of public health concern and measures need to be put in place to regulate the use of these antimicrobials in poultry production.

2020 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Nelson Phiri ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Ntazana N. Sinyangwe ◽  
Luke J. Banda ◽  
...  

Objective: Salmonella species and Escherichia coli are major bacterial enteropathogens of worldwide public health importance that cause devastating foodborne diseases, thereby contributing to increased human morbidity and mortality. Both pathogens have also been found to contribute towards the spread of antimicrobial resistance through the food chain, especially in poultry. This study aimed to determine the occurrence of antibiotic-resistant Salmonella spp. and E. coli in broiler chickens at farm level, abattoirs, and open markets in selected districts of Zambia.Methods: A cross-sectional study was undertaken in seven districts of Zambia to determine the resistance profiles of Salmonella spp. and E. coli obtained from broiler chickens at farms, abattoirs, and open markets. A total of 470 samples were collected which include; litter, cloacal swabs, and carcass swabs. Samples were inoculated into buffered peptone water and incubated for 24 hours then sub-cultured onto MacConkey and Xylose Lysine Deoxycholate agar plates. Identification of Salmonella spp. and E. coli was done using the API-20E kit and confirmation by 16S rDNA sequencing. Confirmed isolates were tested against a panel of 09 antibiotics using the Kirby-Bauer disc diffusion method and interpreted according to the Clinical Laboratory Standards Institute guidelines. Data analysis of the antibiotic sensitivity test results was done using WHONET 2018 software.Results: Overall, 4 Salmonella spp. and 280 E. coli were isolated. One of the Salmonella spp. was resistant to ampicillin (25%), amoxicillin/clavulanic acid (25%), and cefotaxime (25%). E. coli antibiotic resistance was highest to tetracycline (81.4%) and 100% susceptibility to imipenem. The antibiotic susceptibility profile revealed 75.7% (237/280) multidrug-resistant (MDR). The highest MDR profile was observed in 8.2% (23/280) isolates in which 6 out of the 9 classes of antibiotics tested were resistant. Out of the 280 isolates, 11.4% (32/280) exhibited Extensive Drug resistance (XDR).Conclusion: The study found antimicrobial resistance to E. coli and Salmonella spp. in market-ready broiler chickens which were resistant to important antibiotics and is of public health concern.


2020 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract BackgroundAntimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries such as Zambia. This study was undertaken to determine the antimicrobial resistance profiles of Escherichia coli ( E. coli ) and Salmonella isolated from raw retail broiler chicken carcasses purchased from open and supermarkets in Zambia.ResultsA total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates were done using Analytical Profile Index (API 20E) (Biomerieux ® ) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 antibiotics. Multiplex PCR was used to determine the presence of three target genes encoding for resistance: tet A, Sul 1 and bla CTX-M . WHONET 2018 software was used to analyse AST results. The E. coli isolates were mostly resistant to tetracycline (79.4%), ampicillin (51.9%), and trimethoprim/sulfamethoxazole (49.7%). Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the 104 isolates that were screened for the presence of the resistant genes possessed at least one of the targeted resistance genes.ConclusionThis study has demonstrated the presence of AMR E. coli and Salmonella on raw retail broiler chicken carcasses from open and supermarkets, which is of public health concern.


2020 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract Background Antimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries such as Zambia. This study was undertaken to determine the antimicrobial resistance profiles of Escherichia coli (E. coli) and Salmonella isolated from raw retail broiler chicken carcasses purchased from open and supermarkets in Zambia.Results A total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates were done using Analytical Profile Index (API 20E) (Biomerieux®) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 antibiotics. Multiplex PCR was used to determine the presence of three target genes encoding for resistance: tetA, Sul1 and blaCTX-M. WHONET 2018 software was used to analyse AST results. The E. coli isolates were mostly resistant to tetracycline (79.4%), ampicillin (51.9%), and trimethoprim/sulfamethoxazole (49.7%). Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the 104 isolates that were screened for the presence of the resistant genes possessed at least one of the targeted resistance genes.Conclusion This study has demonstrated the presence of AMR E. coli and Salmonella on raw retail broiler chicken carcasses from open and supermarkets, which is of public health concern.


2020 ◽  
Author(s):  
Nelson Phiri ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Ntazana N. Sinyangwe ◽  
Luke John Banda ◽  
...  

AbstractSalmonella species and Escherichia coli are major bacterial enteropathogens of global public health importance that cause foodborne diseases, thereby contributing to increased human morbidity and mortality. Both pathogens have also been found to contribute towards the spread of antimicrobial resistance through the food chain, especially in poultry. The aim of this study was to determine the occurrence of antibiotic-resistant Salmonella sp. and E. coli in broiler chickens at farm level, abattoirs and open markets in selected districts of Zambia. A cross-sectional study was undertaken in seven districts of Zambia to determine the resistance profiles of Salmonella sp. and E. coli obtained from broiler chickens at farms, abattoirs and open markets. A total of 470 samples were collected, including litter, cloacal swabs and carcass swabs. Samples were inoculated into buffered peptone water, sub-cultured onto MacConkey and Xylose Lysine Deoxycholate agar plates. Identification of Salmonella sp. and E. coli was done using the API-20E kit and confirmation by 16S rDNA sequencing. Confirmed isolates were tested against a panel of 10 antibiotics using the Kirby-Bauer disc-diffusion method and interpreted according to the Clinical Laboratory Standards Institute guidelines. Analysis of the antibiotic susceptibility test results was done using WHONET 2018 software. Overall, 4 Salmonella spp. and 280 E. coli were isolated. One of the Salmonella sp. was resistant to ampicillin (25%), amoxicillin/clavulanic acid (25%) and cefotaxime (25%). E. coli antibiotic resistance was highest to tetracycline (81.4%) and lowest to imipenem (0.7%). The antibiotic susceptibility profile revealed 55% (154/280) multidrug resistant E. coli, with the highest multidrug resistance profile (20.7%) in the ampicillin-tetracycline-trimethoprim/sulfamethoxazole drug combination. Furthermore, 4.3% (12/280) of the isolates showed Extensive Drug resistance. The levels of antimicrobial resistance to E. coli and Salmonella observed in market-ready chickens is of public health concern.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Pouya Reshadi ◽  
Fatemeh Heydari ◽  
Reza Ghanbarpour ◽  
Mahboube Bagheri ◽  
Maziar Jajarmi ◽  
...  

Abstract Background Transmission of antimicrobial resistant and virulent Escherichia coli (E. coli) from animal to human has been considered as a public health concern. This study aimed to determine the phylogenetic background and prevalence of diarrheagenic E. coli and antimicrobial resistance in healthy riding-horses in Iran. In this research, the genes related to six main pathotypes of E. coli were screened. Also, genotypic and phenotypic antimicrobial resistance against commonly used antibiotics were studied, then phylo-grouping was performed on all the isolates. Results Out of 65 analyzed isolates, 29.23 % (n = 19) were determined as STEC and 6.15 % (n = 4) as potential EPEC. The most prevalent antimicrobial resistance phenotypes were against amoxicillin/clavulanic acid (46.2 %) and ceftriaxone (38.5 %). blaTEM was the most detected resistance gene (98.4 %) among the isolates and 26.15 % of the E. coli isolates were determined as multi-drug resistant (MDR). Three phylo-types including B1 (76.92 %), A (13.85 %) and D (3.08 %) were detected among the isolates. Conclusions Due to the close interaction of horses and humans, these findings would place emphasis on the pathogenic and zoonotic potential of the equine strains and may help to design antimicrobial resistance stewardship programs to control the dissemination of virulent and multi-drug resistant E. coli strains in the community.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 780
Author(s):  
Lorena Varriale ◽  
Ludovico Dipineto ◽  
Tamara Pasqualina Russo ◽  
Luca Borrelli ◽  
Violante Romano ◽  
...  

Antimicrobial resistance is a public health concern worldwide and it is largely attributed to the horizontal exchange of transferable genetic elements such as plasmids carrying integrons. Several studies have been conducted on livestock showing a correlation between the systemic use of antibiotics and the onset of resistant bacterial strains. In contrast, although companion birds are historically considered as an important reservoir for human health threats, little information on the antimicrobial resistance in these species is available in the literature. Therefore, this study was aimed at evaluating the antimicrobial resistance of Escherichia coli and Pseudomonasaeruginosa isolated from 755 companion birds. Cloacal samples were processed for E. coli and P. aeruginosa isolation and then all isolates were submitted to antimicrobial susceptibility testing. P. aeruginosa was isolated in 59/755 (7.8%) samples, whereas E. coli was isolated in 231/755 (30.7%) samples. Most strains showed multidrug resistance. This study highlights that companion birds may act as substantial reservoirs carrying antimicrobial resistance genes which could transfer directly or indirectly to humans and animals, and from a One Health perspective this risk should not be underestimated.


2021 ◽  
Vol 6 (1) ◽  
pp. 35
Author(s):  
Elizabeth Muligisa-Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang’ombe ◽  
...  

Antimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries such as Zambia. This study was undertaken to determine the antimicrobial resistance profiles of Escherichia coli (E. coli) and Salmonella isolated from retail broiler chicken carcasses purchased from open markets and supermarkets in Zambia. A total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates were done using Analytical Profile Index (API 20E) (Biomerieux®) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 9 antibiotics. WHONET 2018 software was used to analyze AST results. The E. coli isolates were mostly resistant to tetracycline (79.4%), ampicillin (51.9%), and trimethoprim/sulfamethoxazole (49.7%). Two of the five Salmonella isolates were resistant to at least one antibiotic. This study has demonstrated the presence of AMR E. coli and Salmonella on retail broiler chicken carcasses from open markets and supermarkets, which is of public health concern.


Author(s):  
Kar Hui Ong ◽  
Wei Ching Khor ◽  
Jing Yi Quek ◽  
Zi Xi Low ◽  
Sathish Arivalan ◽  
...  

Antimicrobial resistance (AMR) in Escherichia coli (E. coli) poses a public health concern worldwide. Wild birds and rodents, due to their mobility, are potential vehicles for transmission of AMR bacteria to humans. Ninety-six wild birds’ faecal samples and 135 rodents’ droppings samples were collected and analysed in 2017. Forty-six E. coli isolates from wild birds and rodents were subjected to AMR phenotypic and genotypic characterisation. The proportion of E. coli isolates resistant to at least one of the antimicrobials tested from wild birds (80.8%) was significantly higher than that of isolates from rodents (40.0%). The proportion of E. coli isolates resistant to each antimicrobial class for wild birds was 3.8% to 73.1% and that for rodents was 5.0% to 35.0%. Six out of 26 E. coli isolates from wild birds (23.1%) and two out of 20 (10.0%) isolates from rodents were multi-drug resistant (MDR) strains. These MDR E. coli isolates were detected with various antimicrobial resistance genes such as blaTEM-1B and qnrS1 and could be considered as part of the environmental resistome. Findings in this study suggested that wild birds and rodents could play a role in disseminating antimicrobial resistant E. coli, and this underscores the necessity of environment management and close monitoring on AMR bacteria in wild birds and rodents to prevent spreading of resistant organisms to other wildlife animals and humans.


2012 ◽  
Vol 81 (1) ◽  
pp. 3-10
Author(s):  
M. A. Joris ◽  
D. Vanrompay ◽  
K. Verstraete ◽  
K. De Reu ◽  
L. De Zutter

This review deals with the epidemiology and ecology of enterohemorrhagic Escherichia coli (EHEC), a subset of the verocytotoxigenic Escherichia coli (VTEC), and subsequently discusses its public health concern. Attention is also given to the outbreak strain O104:H4, which has been isolated as causative agent of the second largest outbreak of the hemolytic uremic syndrome worldwide, which started in Germany in May 2011. This outbreak strain is not an EHEC as such but possesses an unusual combination of EHEC and enteroaggregative E. coli (EAggEC) virulence properties.


2020 ◽  
Vol 13 (11) ◽  
pp. 2528-2533
Author(s):  
Munsanda Susan Kapena ◽  
John Bwalya Muma ◽  
Charles Miyanda Mubita ◽  
Musso Munyeme

Background and Aim: Antimicrobial resistance (AMR) has risen as a serious cross-cutting global public health emergency. At the center of this emergency, foods of animal origin have particularly been singled out as possible drivers despite the paucity of information. This study has been formulated to provide answers to the identified critical gaps in the food safety industry and the public health sphere. In particular, this study was undertaken to investigate the AMR of Escherichia coli and Salmonella in raw retail table eggs in Lusaka, Zambia. Materials and Methods: Accordingly, a cross-sectional study to determine antibiotic susceptibility of E. coli and Salmonella from raw retail table eggs was undertaken. Standard bacteriological methods involving culture and phenotypic characterization were applied. A total of 1080 raw table eggs pooled into composite samples (five eggs per composite sample) translating into 216 distinct and independently identifiable compounded sample units were collected from randomly selected supermarkets and open markets over 4 months (August 2018-November 2018). The eggs were screened for the presence of E. coli and Salmonella within 24 h of sample collection by standard microbiological methods. The Kirby–Bauer disk diffusion technique was used for antimicrobial susceptibility testing using a panel of nine different antibiotics. Results: A total of 216 pooled egg samples were analyzed at two levels of contamination, (i) eggshell and (ii) egg content. From the eggshell, five compounded samples were positive for Salmonella spp. representing 2.31% (5/216), while 34.26% (74/216) were positive for E. coli. On the other hand, samples from egg contents were negative for Salmonella and E. coli. Eggshells were more likely to be contaminated by E. coli compared to the egg content (χ2=20.95, p<0.0001). Imipenem was 100% effective against E. coli isolates. With Salmonella, high resistance was seen in 80% against tetracycline (TE) and 60% to ampicillin (AMP). E. coli showed 94.6% resistance to colistin sulfate, 83.8% resistance to TE, and 59.5% resistance to AMP. Conclusion: Overall, this study has been able to demonstrate the presence of E. coli and Salmonella outside and inside table eggs in Zambia. It has also shown the resistance of identified isolates which poses a serious public health concern given the consumption patterns of these table eggs.


Sign in / Sign up

Export Citation Format

Share Document