scholarly journals Exogenous abscisic acid induces on lipid and flavonoid metabolism of tea plant under drought stress

2019 ◽  
Author(s):  
Zhongshuai Gai ◽  
Yu Wang ◽  
Yiqian Ding ◽  
Wenjun Qian ◽  
Hui Xie ◽  
...  

Abstract Background: Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance, but the regulation mechanism of exogenous ABA on tea plants under drought stress was rarely reported. Results: The results showed that the exogenous ABA significantly induced the metabolic pathways of tea leaves under drought stress, including the chlorophyll synthesis, photosynthesis, sucrose and starch metabolism, TCA cycle, glycolysis, lipid metabolism and flavonoids biosynthesis. In which, the exogenous ABA could up-regulated the genes related to lipid metabolism and flavonoid biosynthesis, including LPCAT , ALDH, FLS, CHI, DFR, and down-regulated the genes related to lipid metabolism and flavonoid biosynthesis, including FATB, EKI, DGK , PAL, 4CL . The exogenous ABA could also increase the contents of flavone, anthocyanins, flavonol, isoflavone of tea leaves under drought stress, including delphinidin 3-O-glucosidewere, cyanidin 3-O-rutinoside, kaempferitrin, sakuranetin, prunetin, kaempferol, and decrease the contents of glycerophospholipids, glycerolipids and fatty acids of tea leaves under drought stress, including LysoPE 14:0, LysoPE 16:0, LysoPE 18:0, LysoPE 18:1, LysoPC 15:1 and LysoPC 16:0. And there were strong correlations between the genes and metabolites. Conclusions: The results suggested that the exogenous ABA could alleviate the damages of tea leaves under drought stress through inducing the expressions of the genes and altering the contents of metabolites in response to drought stress. The data also provide a good foundation for further research on the roles of the genes and metabolites in response to ABA.

2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Lin Zhou ◽  
Hui Xu ◽  
Sue Mischke ◽  
Lyndel W Meinhardt ◽  
Dapeng Zhang ◽  
...  

2003 ◽  
Vol 128 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Zhaolong Wang ◽  
Bingru Huang ◽  
Qingzhang Xu

Abscisic acid (ABA) is an important hormone regulating plant response to drought stress. The objective of this study was to investigate effects of exogenous ABA application on turf performance and physiological activities of kentucky bluegrass (Poa pratensis L.) in response to drought stress. Plants of two kentucky bluegrass cultivars, `Brilliant' (drought susceptible) and `Midnight' (drought tolerant), were treated with ABA (100 μm) or water by foliar application and then grown under drought stress (no irrigation) or well-watered (irrigation on alternate days) conditions in a growth chamber. The two cultivars responded similarly to ABA application under both watering regimes. Foliar application of ABA had no effects on turf quality or physiological parameters under well-watered conditions. ABA application, however, helped maintain higher turf quality and delayed the quality decline during drought stress, compared to the untreated control. ABA-treated plants exposed to drought stress had higher cell membrane stability, as indicated by less electrolyte leakage of leaves, and higher photochemical efficiency, expressed as Fv/Fm, compared to untreated plants. Leaf water potential was not significantly affected, whereas leaf turgor pressure increased with ABA application after 9 and 12 d of drought. Osmotic adjustment increased with ABA application, and was sustained for a longer period of drought in `Midnight' than in `Brilliant'. The results suggested that exogenous ABA application improved turf performance during drought in both drought-sensitive and tolerant cultivars of kentucky bluegrass. This positive effect of ABA could be related to increased osmotic adjustment, cell turgor maintenance, and reduced damage to cell membranes and the photosynthetic system.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shenglan Li ◽  
Fulai Liu

Plants have evolved multiple strategies to survive and adapt when confronting the changing climate, including elevated CO2 concentration (e[CO2]) and intensified drought stress. To explore the role of abscisic acid (ABA) in modulating the response of plant water relation characteristics to progressive drought under ambient (a[CO2], 400 ppm) and e[CO2] (800 ppm) growth environments, two tomato (Solanum lycopersicum) genotypes, Ailsa Craig (AC) and its ABA-deficient mutant (flacca), were grown in pots, treated with or without exogenous ABA, and exposed to progressive soil drying until all plant available water in the pot was depleted. The results showed that exogenous ABA application improved leaf water potential, osmotic potential, and leaf turgor and increased leaf ABA concentrations ([ABA]leaf) in AC and flacca. In both genotypes, exogenous ABA application decreased stomatal pore aperture and stomatal conductance (gs), though these effects were less pronounced in e[CO2]-grown AC and gs of ABA-treated flacca was gradually increased until a soil water threshold after which gs started to decline. In addition, ABA-treated flacca showed a partly restored stomatal drought response even when the accumulation of [ABA]leaf was vanished, implying [ABA]leaf might be not directly responsible for the decreased gs. During soil drying, [ABA]leaf remained higher in e[CO2]-grown plants compared with those under a[CO2], and a high xylem sap ABA concentration was also noticed in the ABA-treated flacca especially under e[CO2], suggesting that e[CO2] might exert an effect on ABA degradation and/or redistribution. Collectively, a fine-tune ABA homeostasis under combined e[CO2] and drought stress allowed plants to optimize leaf gas exchange and plant water relations, yet more detailed research regarding ABA metabolism is still needed to fully explore the role of ABA in mediating plant physiological response to future drier and CO2-enriched climate.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Mei-Ya Liu ◽  
Dandan Tang ◽  
Yuanzhi Shi ◽  
Lifeng Ma ◽  
Yan Li ◽  
...  

Abstract Background Nitrogen (N) nutrition significantly affected metabolism and accumulation of quality-related compounds in tea plant (Camellia sinensis L.). Little is known about the physiological and molecular mechanisms underlying the effects of short-term repression of N metabolism on tea roots and leaves for a short time. Results In this study, we subjected tea plants to a specific inhibitor of glutamine synthetase (GS), methionine sulfoximine (MSX), for a short time (30 min) and investigated the effect of the inhibition of N metabolism on the transcriptome and metabolome of quality-related compounds. Our results showed that GS activities in tea roots and leaves were significantly inhibited upon MSX treatment, and both tissue types showed a sensitive metabolic response to GS inhibition. In tea leaves, the hydrolysis of theanine decreased with the increase in theanine and free ammonium content. The biosynthesis of all other amino acids was repressed, and the content of N-containing lipids declined, suggesting that short-term inhibition of GS reduces the level of N reutilization in tea leaves. Metabolites related to glycolysis and the tricarboxylic acid (TCA) cycle accumulated after GS repression, whereas the content of amino acids such as glycine, serine, isoleucine, threonine, leucine, and valine declined in the MXS treated group. We speculate that the biosynthesis of amino acids is affected by glycolysis and the TCA cycle in a feedback loop. Conclusions Overall, our data suggest that GS repression in tea plant leads to the reprogramming of amino acid and lipid metabolic pathways.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaming Chen ◽  
Shuhua Wu ◽  
Fang Dong ◽  
Jianlong Li ◽  
Lanting Zeng ◽  
...  

Besides aroma and taste, the color of dry tea leaves, tea infusion, and infused tea leaves is also an important index for tea quality. Shading can significantly increase the chlorophyll content of tea leaves, leading to enhanced tea leaf coloration. However, the underlying regulatory mechanism remains unclear. In this study, we revealed that the expressions of chlorophyll synthesis genes were significantly induced by shading, specially, the gene encoding protochlorophyllide oxidoreductase (CsPOR). Indoor control experiment showed that decreased light intensity could significantly induce the expression of CsPOR, and thus cause the increase of chlorophyll content. Subsequently, we explored the light signaling pathway transcription factors regulating chlorophyll synthesis, including CsPIFs and CsHY5. Through expression level and subcellular localization analysis, we found that CsPIF3-2, CsPIF7-1, and CsHY5 may be candidate transcriptional regulators. Transcriptional activation experiments proved that CsHY5 inhibits CsPORL-2 transcription. In summary, we concluded that shading might promote the expression of CsPORL-2 by inhibiting the expression of CsHY5, leading to high accumulation of chlorophyll in tea leaves. The results of this study provide insights into the mechanism regulating the improvements to tea plant quality caused by shading.


1992 ◽  
Vol 117 (3) ◽  
pp. 389-393 ◽  
Author(s):  
Daniel I. Leskovar ◽  
Daniel J. Cantliffe

ABA and drought stress were evaluated on growth morphology and dry weight of pepper (Capsicum annuum L.) seedlings subjected to continuous watering (CV) or alternate watering (AW) subflotation irrigation. When ABA (10-4m) was sprayed on to leaves 28, 32, or 37 days after seeding (DAS), leaf growth was limited relative to the controls. Root dry weight, basal root count, and diameter decreased in AW compared with CW-treated seedlings. ABA did not influence root growth of the transplants or subsequent total fruit yield. When ABA was applied to leaves at 20,23, or 29 DAS, there was a transient inhibition of leaf weight increase, but root growth was unaffected. Exogenous ABA may have a practical application as a substitute for drought stress to control transplant growth in the nursery. Chemical name used: abscisic acid (ABA).


2021 ◽  
Vol 12 ◽  
Author(s):  
Sizhou Chen ◽  
Yuan Gao ◽  
Kai Fan ◽  
Yujie Shi ◽  
Danni Luo ◽  
...  

Effective evaluation of physiological and biochemical indexes and drought degree of tea plant is an important technology to determine the drought resistance ability of tea plants. At present, the traditional detection method of tea drought stress is mainly based on physiological and biochemical detection, which is not only destructive to tea plants, but also time-consuming and laborious. In this study, through simulating drought treatment of tea plant, hyperspectral camera was used to obtain spectral data of tea leaves, and three machine learning models, namely, support vector machine (SVM), random forest (RF), and partial least-squares (PLS) regression, were used to model malondialdehyde (MDA), electrolyte leakage (EL), maximum efficiency of photosystem II (Fv/Fm), soluble saccharide (SS), and drought damage degree (DDD) of tea leaves. The results showed that the competitive adaptive reweighted sampling (CARS)-PLS model of MDA had the best effect among the four physiological and biochemical indexes (Rcal = 0.96, Rp = 0.92, RPD = 3.51). Uninformative variable elimination (UVE)-SVM model was the best in DDD (Rcal = 0.97, Rp = 0.95, RPD = 4.28). Therefore, through the establishment of machine learning model using hyperspectral imaging technology, we can monitor the drought degree of tea seedlings under drought stress. This method is not only non-destructive, but also fast and accurate, which is expected to be widely used in tea garden water regime monitoring.


Plant Science ◽  
2021 ◽  
Vol 304 ◽  
pp. 110804
Author(s):  
Yudong Liu ◽  
Ling Wen ◽  
Yuan Shi ◽  
Deding Su ◽  
Wang Lu ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 5064
Author(s):  
Qinghua Chen ◽  
Linghui Guo ◽  
Yanwen Yuan ◽  
Shuangling Hu ◽  
Fei Guo ◽  
...  

Histone methylation plays an important regulatory role in the drought response of many plants, but its regulatory mechanism in the drought response of the tea plant remains poorly understood. Here, drought stress was shown to induce lower relative water content and significantly downregulate the methylations of histone H3K4 in the tea plant. Based on our previous analysis of the SET Domain Group (SDG) gene family, the full-length coding sequence (CDS) of CsSDG36 was cloned from the tea cultivar ‘Fuding Dabaicha’. Bioinformatics analysis showed that the open reading frame (ORF) of the CsSDG36 gene was 3138 bp, encoding 1045 amino acids and containing the conserved structural domains of PWWP, PHD, SET and PostSET. The CsSDG36 protein showed a close relationship to AtATX4 of the TRX subfamily, with a molecular weight of 118,249.89 Da, and a theoretical isoelectric point of 8.87, belonging to a hydrophilic protein without a transmembrane domain, probably located on the nucleus. The expression of CsSDG36 was not detected in the wild type, while it was clearly detected in the over-expression lines of Arabidopsis. Compared with the wild type, the over-expression lines exhibited lower hyperosmotic resistance by accelerating plant water loss, increasing reactive oxygen species (ROS) pressure, and increasing leaf stomatal density. RNA-seq analysis suggested that the CsSDG36 overexpression caused the differential expression of genes related to chromatin assembly, microtubule assembly, and leaf stomatal development pathways. qRT-PCR analysis revealed the significant down-regulation of stomatal development-related genes (BASL, SBT1.2(SDD1), EPF2, TCX3, CHAL, TMM, SPCH, ERL1, and EPFL9) in the overexpression lines. This study provides a novel sight on the function of histone methyltransferase CsSDG36 under drought stress.


Sign in / Sign up

Export Citation Format

Share Document