Glatiramer acetate treatment inhibits inflammatory responses and improves survival in a mice model of cecal ligation and puncture-induced sepsis

Author(s):  
Elahe Maleki ◽  
Mohammad Sheibani ◽  
Sadaf Nezamoleslami ◽  
Ahmad Reza Dehpour ◽  
Nasrin Takzaree ◽  
...  

Abstract Objectives Sepsis is a clinical crisis which has been considered as one of the important causes of mortality across the world. We hypothesized that modulation of hyper-inflammatory phase of sepsis pathophysiology can lead to protective effects on survival outcome. Glatiramer acetate (GA) is a neuroprotective drug commonly used in multiple sclerosis (MS). GA is characterized by immunom activity via regulation of innate and adaptive immunity. This study was designed to evaluate the acute treatment with GA on initial inflammatory response-induced mortality in septic mice. Methods Cecal ligation and puncture (CLP) model was operated on male mice as a model of Polymicrobial sepsis. GA was administrated intraperitoneally after the sepsis induction at doses of 0.5, 1, and 2 mg/kg in three treatment groups. To investigate the effect of GA on short-term survival, septic mice were observed during 72 h after CLP. Serum levels of TNF-α, IL-1β, and IL-6 as pro-inflammatory cytokines and also IL-10 as a critical anti-inflammatory cytokine were analysed. To consider sepsis-induced acute kidney injury, renal functional biomarkers and histopathological changes was assessed. Results GA treatment significantly improved survival rate at doses of 1, and 2 mg/kg. Survival improvement was accompanied by remarkable reduction in the pro-inflammatory cytokines and enhanced production of IL-10. GA showed to have protective effects on renal function as well. Conclusions Immunomodulatory and anti-inflammatory properties of GA resulted in increase in survival rate and decrease in inflammatory markers in mice model of cecal ligation and puncture–induced sepsis.

Drug Research ◽  
2021 ◽  
Author(s):  
Hasan Yousefi-Manesh ◽  
Samira Shirooie ◽  
Tayebeh Noori ◽  
Seyed Mohammad Tavangar ◽  
Mohammad Sheibani ◽  
...  

AbstractSepsis is a severe systemic inflammatory response with high mortality rate resulting from different microorganisms. Cytokines activation is essential for the immune response, but in painful conditions like sepsis, cytokines act as a double-edged sword and dysregulate immune response which is life-threatening owing to multiple organ dysfunction. The abnormality in 5-HT function is involved in pathological conditions like irritable bowel syndrome, inflammation, myocardial ischemia, itch and renal injury. Sumatriptan, a 5-HT1B/1D agonist, has anti-inflammatory and anti-oxidative stress effects on animal models. This study was aimed to assess the effects of sumatriptan on kidney injury, the levels of pro-inflammatory cytokines and the percentage of survival in (CLP)-induced sepsis were examined.Cecal ligation and puncture (CLP) model was done on adult C57BL/6 male mice to induce Polymicrobial sepsis. Sumatriptan was injected intraperitoneally 1 h after the sepsis induction by CLP at doses of 0.1, 0.3, and 1 mg/kg in 3 treatment groups. To study the effect of sumatriptan on short-term survival, septic animals were detected 72 h after CLP. Serum levels of TNF-α, IL-1β, IL-6 and IL-10 were evaluated. To study sepsis-induced acute renal failure, kidney functional biomarkers and histopathological alterations were evaluated.Sumatriptan (0.3 mg/kg) administration significantly enhanced survival rate (P<0.01) compared to the CLP group. The beneficial effects of sumatriptan were related to a significant decrease in the pro-inflammatory cytokines and elevated level of IL-10. Sumatriptan presented protective effects on kidney biomarkers and histopathology assay.Anti-inflammatory effects of sumatriptan lead to decrease mortality rate and inflammatory cytokines in CLP induction sepsis in C57BL/6 mice.


2021 ◽  
Vol 19 ◽  
pp. 205873922110008
Author(s):  
Xiaoming Zhang ◽  
Xiaojie Zhou

Sepsis is a fatal infectious disease accompanied by multiple organ failure. Immune dysfunction and inflammatory response play an important role in the progression of the disease. Tripterygium glycoside (TG) has immune suppression and anti-inflammatory effects. Here, we investigated the effects of TG on cecal ligation and puncture (CLP)-induced sepsis. Septic mice model was induced by cecal ligation and puncture(CLP), after administration of TG, specimens are collected at designated time points. Histopathology changes of lung tissues and Kidney tissues were observed under light microscope, magnetic microbeads were used to isolate splenic CD4+CD25+ regulatory T cells (Tregs), and phenotypes were then analyzed by flow cytometry. ELISA method was employed to detect the concentrations of plasma TNF-α, IL-6, and IL-10. Nuclear p-NF-κB and Cytoplasmic IkB-a was detected by western blot. TG administration significantly alleviated lung and kidney inflammatory injury and improved the survival of septic mice. Furthermore, the suppressive function of regulatory T cells was enhanced and plasma expression of IL-10 was increased following TG treatment. The NF-B signaling pathway and secretion of plasma TNF-α and IL-6 was notably inhibited in septic mice treated with TG. TG exerts protective effects through improving regulatory T cells and attenuating pro-inflammatory cytokines in septic mice.


2020 ◽  
Author(s):  
Shao-Peng Lin ◽  
Jue-Xian Wei ◽  
Shan Ye ◽  
Jiasong Hu ◽  
Jingyi Bu ◽  
...  

Abstract Background and purpose: Artemisinin has been in use as an anti-malarial drug for almost half a century in the world. There is growing evidence that artemisinin also possesses potent anti-inflammatory and immunoregulatory properties. However, the efficacy of artemisinin treatment in neurocognitive deficits associated with sepsis remains unknown. Here, we evaluate the possible protective effects and explore the underlying mechanism of artemisinin on cognitive impairment resulting from sepsis.Methods: Male C57BL/6 mice were pretreated with either vehicle or artemisinin, and then injected with LPS to establish an animal model of sepsis. The cognitive function was then assessed using the Morris water maze. Neuronal damage and neuroinflammation in the hippocampus were evaluated by immunohistochemical and ELISA analysis. Additionally, the protective mechanism of artemisinin was determined in vitro.Results: The results showed that artemisinin preconditioning attenuated LPS-induced cognitive impairment, neural damage, and microglial activation in the mouse brain. The in vitro experiment revealed that artemisinin could reduce the production of pro-inflammatory cytokines and suppress the microglial migration in the BV2 microglia cells. Meanwhile, western blot demonstrated that artemisinin suppressed nuclear translocation of nuclear factor kappa-B and the expression of pro-inflammatory cytokines (i.e. tumor necrosis factor alpha, interleukin-6) by activating adenosine monophosphate-activated protein kinaseα1 (AMPKα1) pathway. Furthermore, knock-down of AMPKα1 markedly abolished the anti-inflammatory effects of artemisinin.Conclusion: Artemisinin is a potential therapeutic agent for sepsis-associated neuroinflammation and cognitive impairment, and its effect was probably mediated by the activation of AMPKα1 signalling pathway in microglia.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jeonghyeon Moon ◽  
Seon-yeong Lee ◽  
Jeong Won Choi ◽  
A Ram Lee ◽  
Jin Hee Yoo ◽  
...  

AbstractScleroderma is an autoimmune disease that causes dermal fibrosis. It occurs when collagen accumulates in tissue as a result of persistent inflammation. Th17 cells and pro-inflammatory cytokines such as IL-1β, IL-6, IL-17, and TNF-α play important roles in the pathogenesis of scleroderma. Because metformin, a medication used to treat diabetes, has effective immunoregulatory functions, we investigated its therapeutic function in scleroderma. Mice in a model of bleomycin-induced scleroderma were treated with metformin for 2 weeks. Histological assessment demonstrated protective effects of metformin against scleroderma. Metformin decreased the expression of pro-inflammatory factors in dermal tissue and lymphocytes. It also decreased mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6, IL-17, and TNF-α) and fibrosis-inducing molecules both in vivo and in vitro. These results suggest that metformin treatment has anti-inflammatory effects on lymphocytes via the inhibition of IL-17 and cytokines related to Th17 differentiation, such as IL-1β, IL-6, and TNF-α. To investigate how metformin modulates the inflammatory process in skin fibroblasts, we measured mTOR-STAT3 signaling in skin fibroblasts and found that phosphorylated mTOR and phosphorylated STAT3 protein expression were decreased by metformin treatment. These results suggest that metformin has potential to treat scleroderma by inhibiting pro-inflammatory cytokines and anti-inflammatory activity mediated by mTOR-STAT3 signaling.


2021 ◽  
Vol 14 (4) ◽  
pp. 380
Author(s):  
Hadeel Alsaegh ◽  
Hala Eweis ◽  
Fatemah Kamal ◽  
Aziza Alrafiah

The risk of developing epilepsy is strongly linked to peripheral inflammatory disorders in humans. High-mobility group box protein 1 (HMGB1) has the most focus for being a suspect in this scenario. The current study aimed to detect the celecoxib effect, an anti-inflammatory drug, on decreasing seizure susceptibility and organ damage in lipopolysaccharides (LPS)/pilocarpine (PILO) pretreated Wistar rats. Rats were divided into 6 groups (8 each): group 1 (control), group 2 (PILO), group 3 (PILO+LPS), group 4 (PILO+LPS+(VPA) Valproic acid), group 5 (PILO+LPS+Celecoxib), and group 6 (PILO+LPS+VPA+Celecoxib). LPS was used to induce sepsis and PILO to induce seizures. Oxidative stress markers, pro-inflammatory cytokines, and HMGB1 levels in serum and brain homogenate were evaluated. Histopathological studies were conducted on the hippocampus, liver, lung, and kidney. Treatment with celecoxib either alone or in combination with VPA significantly reduced Racine score and delays latency to generalized tonic-clonic seizures onset with a significant decrease in hippocampal levels of pro-inflammatory cytokines, oxidative stress markers, and increase in reduced glutathione. In addition, celecoxib treatment either alone or in combination with VPA suppressed HMGB1translocation into peripheral circulation more than treatment with VPA alone. Furthermore, hippocampus, liver, lung, and kidney histopathological changes were improved in contrast to other epileptic groups. Celecoxib either alone or combined with VPA has antiepileptic and multiorgan protective effects on acute seizures and inflammatory models induced by PILO with LPS. It decreased histopathological findings, oxidative, and inflammatory effects induced by VPA and LPS. This might be due to its anti-oxidative, anti-inflammatory and anti-HMGB1 mediated effects.


2021 ◽  
Vol 12 (6) ◽  
pp. 8070-8080

We investigated the protective effects of pycnogenol (PYC), a natural anti-oxidant with an anti-inflammatory effect, on the acetaminophen (APAP)-induced hepatorenal injury in rats. Wistar albino rats were divided into four experimental groups: control, PYC (10 mg/kg, ip), APAP (1000 mg/kg), and APAP+PYC groups. Rats were decapitated 24 hours after the APAP injection, and their blood was taken to determine blood urea nitrogen (BUN), creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and pro-inflammatory cytokines; TNF-α and IL-1 β. Liver and kidney tissue samples were obtained for the histological examination and the determination of malondialdehyde (MDA) and glutathione (GSH) levels as well as myeloperoxidase (MPO) and Na+/K+-ATPase activities. PYC treatment decreased the APAP-induced elevations in serum pro-inflammatory cytokines and reduced the impairment of liver and kidney functions. Furthermore, the increase in tissue lipid peroxidation and myeloperoxidase activity and the decrease in the GSH levels and Na+/K+-ATPase activity by the APAP overdose were reversed by the PYC treatment. Besides, histologic findings reinforce the protective effect of PYC in APAP-induced hepatorenal damage. PYC, which appears to have restored the GSH and depressed neutrophil infiltration and the associated release of pro-inflammatory cytokines, merits consideration as an anti-oxidant and anti-inflammatory agent in preventing APAP-induced hepatorenal damage.


2020 ◽  
Vol 18 ◽  
pp. 205873922096776
Author(s):  
Shi-Wen Kuo ◽  
Wen-Lin Su ◽  
Tz-Chong Chou

Introduction: Sepsis is a severe disease with a high morbidity and mortality. Baicalin, an active compound of Chinese medicine, Scutellaria baicalensis Georgi (Huang Qui), exhibits several beneficial effects. In this study, we examined whether administration of baicalin increases the survival in mice with endotoxemia and investigated its anti-inflammatory mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods: The production of NOx, PGE2, and pro-inflammatory cytokines, the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the nuclear translocation of NF-κB in LPS-stimulated macrophages or endotoxic mice were determined. The model of severe endotoxic mice was established by injection of LPS (60 mg/kg, i.p.). Results: Baicalin significantly inhibited the production of NO, PGE2, and pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6 in LPS-stimulated macrophages. Baicalin treatment also markedly suppressed LPS-induced iNOS and COX-2 expression at the transcriptional and translational levels, and the nuclear translocation of NF-κB in macrophages. Similarly, the serum concentrations of NOx, PGE2, and pro-inflammatory cytokines, and the lung myeloperoxidase activity were greatly reduced in baicalin-treated endotoxic mice. Notably, after LPS injection, the 3-day survival rate of mice treated with pre- or post-administration of baicalin (50 mg/kg, i.p.) remarkably increased to 100% and 90%, respectively compared with LPS-injected alone mice with a survival rate of 0%. Conclusion: Baicalin has a potent anti-inflammatory activity in LPS-stimulated macrophages and endotoxic mice. Moreover, treatment with baicalin dramatically increased the survival in the severe septic mice, suggesting that baicalin may be a potential agent for sepsis therapy.


2021 ◽  
Author(s):  
Jeonghyeon Moon ◽  
Seon-yeong Lee ◽  
Jeong Won Choi ◽  
Aram Lee ◽  
Jin Hee Yoo ◽  
...  

Abstract Scleroderma is an autoimmune disease that causes dermal fibrosis. It occurs when collagen accumulates in tissue as a result of persistent inflammation. Th17 cells and pro-inflammatory cytokines such as IL-1β, IL-6, IL-17, and TNF-α play important roles in the pathogenesis of scleroderma. Because metformin, a medication used to treat diabetes, has effective immunoregulatory functions, we investigated its therapeutic function in scleroderma. Mice in a model of bleomycin-induced scleroderma were treated with metformin for 2 weeks. Histological assessment demonstrated protective effects of metformin against scleroderma. Metformin decreased the expression of pro-inflammatory factors in dermal tissue and lymphocytes. It also decreased mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6, IL-17, and TNF-α) and fibrosis-inducing molecules both in vivo and in vitro. These results suggest that metformin treatment has anti-inflammatory effects on lymphocytes via the inhibition of IL-17 and cytokines related to Th17 differentiation, such as IL-1β, IL-6, and TNF-α. To investigate how metformin modulates the inflammatory process in skin fibroblasts, we measured mTOR-STAT3 signaling in skin fibroblasts and found that mTOR and STAT3 protein expression were decreased by metformin treatment. These results suggest that metformin has potential to treat scleroderma by inhibiting pro-inflammatory cytokines and anti-inflammatory activity mediated by mTOR-STAT3 signaling.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 653
Author(s):  
Seth O. Asiedu ◽  
Samuel K. Kwofie ◽  
Emmanuel Broni ◽  
Michael D. Wilson

Severely ill coronavirus disease 2019 (COVID-19) patients show elevated concentrations of pro-inflammatory cytokines, a situation commonly known as a cytokine storm. The p38 MAPK receptor is considered a plausible therapeutic target because of its involvement in the platelet activation processes leading to inflammation. This study aimed to identify potential natural product-derived inhibitory molecules against the p38α MAPK receptor to mitigate the eliciting of pro-inflammatory cytokines using computational techniques. The 3D X-ray structure of the receptor with PDB ID 3ZS5 was energy minimized using GROMACS and used for molecular docking via AutoDock Vina. The molecular docking was validated with an acceptable area under the curve (AUC) of 0.704, which was computed from the receiver operating characteristic (ROC) curve. A compendium of 38,271 natural products originating from Africa and China together with eleven known p38 MAPK inhibitors were screened against the receptor. Four potential lead compounds ZINC1691180, ZINC5519433, ZINC4520996 and ZINC5733756 were identified. The compounds formed strong intermolecular bonds with critical residues Val38, Ala51, Lys53, Thr106, Leu108, Met109 and Phe169. Additionally, they exhibited appreciably low binding energies which were corroborated via molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) calculations. The compounds were also predicted to have plausible pharmacological profiles with insignificant toxicity. The molecules were also predicted to be anti-inflammatory, kinase inhibitors, antiviral, platelet aggregation inhibitors, and immunosuppressive, with probable activity (Pa) greater than probable inactivity (Pi). ZINC5733756 is structurally similar to estradiol with a Tanimoto coefficient value of 0.73, which exhibits anti-inflammatory activity by targeting the activation of Nrf2. Similarly, ZINC1691180 has been reported to elicit anti-inflammatory activity in vitro. The compounds may serve as scaffolds for the design of potential biotherapeutic molecules against the cytokine storm associated with COVID-19.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Carolyn A. Harris ◽  
Diego M. Morales ◽  
Rooshan Arshad ◽  
James P. McAllister ◽  
David D. Limbrick

Abstract Background Approximately 30% of cerebrospinal fluid (CSF) shunt systems for hydrocephalus fail within the first year and 98% of all patients will have shunt failure in their lifetime. Obstruction remains the most common reason for shunt failure. Previous evidence suggests elevated pro-inflammatory cytokines in CSF are associated with worsening clinical outcomes in neuroinflammatory diseases. The aim of this study was to determine whether cytokines and matrix metalloproteinases (MMPs) contribute towards shunt failure in hydrocephalus. Methods Using multiplex ELISA, this study examined shunt failure through the CSF protein concentration profiles of select pro-inflammatory and anti-inflammatory cytokines, as well as select MMPs. Interdependencies such as the past number of previous revisions, length of time implanted, patient age, and obstruction or non-obstruction revision were examined. The pro-inflammatory cytokines were IL-1β, IL-2, IL-5, IL-6, IL-8, IL-12, IL-17, TNF-α, GM-CSF, IFN-γ. The anti-inflammatory cytokines were IL-4 and IL-10, and the MMPs were MMP-2, MMP-3, MMP-7, MMP-9. Protein concentration is reported as pg/mL for each analyte. Results Patient CSF was obtained at the time of shunt revision operation; all pediatric (< 18), totaling n = 38. IL-10, IL-6, IL-8 and MMP-7 demonstrated significantly increased concentrations in patient CSF for the non-obstructed subgroup. Etiological examination revealed IL-6 was increased in both obstructed and non-obstructed cases for PHH and congenital hydrocephalic patients, while IL-8 was higher only in PHH patients. In terms of number of past revisions, IL-10, IL-6, IL-8, MMP-7 and MMP-9 progressively increased from zero to two past revisions and then remained low for subsequent revisions. This presentation was notably absent in the obstruction subgroup. Shunts implanted for three months or less showed significantly increased concentrations of IL-6, IL-8, and MMP-7 in the obstruction subgroup. Lastly, only patients aged six months or less presented with significantly increased concentration of IL-8 and MMP-7. Conclusion Non-obstructive cases are reported here to accompany significantly higher CSF cytokine and MMP protein levels compared to obstructive cases for IL-10, IL-6, IL-8, MMP-7 and MMP-9. A closer examination of the definition of obstruction and the role neuroinflammation plays in creating shunt obstruction in hydrocephalic patients is suggested.


Sign in / Sign up

Export Citation Format

Share Document