scholarly journals Risk Assessment of Heavy Metal in the Surface Sediment at the Drinking Water Source of the Xiangjiang River in South China

2020 ◽  
Author(s):  
Zhifeng Huang ◽  
Chengyou Liu ◽  
Xingru Zhao ◽  
Jing Dong ◽  
Binghui Zheng

Abstract Background: The Xiangjiang River is an important drinking water resource for the Hunan province of China. It is crucial to ascertain the pollution status, influencing factors, ecological risks, and possible sources of heavy metals in the sediments of the Xiangjiang River. Sediment is both a source and a sink of heavy metals in aquatic ecosystems. In this study, surface sediment was collected from the Zhuzhou Reach of the Xiangjiang River and eight heavy metals were investigated. Results: In all sediment samples, all eight heavy metals were detected and their average concentration fell in the order of Zn > Pb > As > Cu > Cr > Ni > Cd > Co. Assessment shows extremely serious Cd pollution and a very high potential ecological risk from Cd. According to correlation analysis and principle component analysis (PCA), As, Cu, Ni, Pb, and Zn originate from industrial wastewater and mineral smelting activities, whereas Co, Cr, and Ni come from natural sources. Redundancy analysis (RDA) reveals that the organic matter content and the particle size of the sediment have some influence on the enrichment of heavy metals. Conclusion: Among all eight examined heavy metals in the surveyed area, the content of Zn, Pb, and As is the highest, and that of Cd and Co is the lowest. Despite a low level of absolute content, the Cd in sediment already renders a high ecological risk and thus calls for urgent attention. Anthropogenic activities are the main source of heavy metals in the sediment. The distribution of heavy metals is also influenced by sediment properties. The results provide guidance for controlling heavy metal pollution and protecting drinking water sources in the Xiangjiang River.

2019 ◽  
Author(s):  
Zhifeng Huang ◽  
Chengyou Liu ◽  
Xingru Zhao ◽  
Jing Dong ◽  
Binghui Zheng

Abstract Background: The Xiangjiang River is an important drinking water resource for the Hunan province of China. It is crucial to ascertain the pollution status, influencing factors, ecological risks, and possible sources of heavy metals in the sediments of the Xiangjiang River. Sediment is both a source and a sink of heavy metals in aquatic ecosystems. In this study, surface sediment was collected from the Zhuzhou Reach of the Xiangjiang River and eight heavy metals were investigated.Results: In all sediment samples, all eight heavy metals were detected and their average concentration fell in the order of Zn > Pb > As > Cu > Cr > Ni > Cd > Co. Assessment shows extremely serious Cd pollution and a very high potential ecological risk from Cd. According to correlation analysis and principle component analysis (PCA), As, Cu, Ni, Pb, and Zn originate from industrial wastewater and mineral smelting activities, whereas Co, Cr, and Ni come from natural sources. Redundancy analysis (RDA) reveals that the organic matter content and the particle size of the sediment have some influence on the enrichment of heavy metals.Conclusion: Among all eight examined heavy metals in the surveyed area, the content of Zn, Pb, and As is the highest, and that of Cd and Co is the lowest. Despite a low level of absolute content, the Cd in sediment already renders a high ecological risk and thus calls for urgent attention. Anthropogenic activities are the main source of heavy metals in the sediment. The distribution of heavy metals is also influenced by sediment properties. The results provide guidance for controlling heavy metal pollution and protecting drinking water sources in the Xiangjiang River.


2020 ◽  
Vol 20 (2) ◽  
pp. 77-85
Author(s):  
S. A. Ndur ◽  
S. Y. Nyarko ◽  
I. Quaicoe ◽  
L. B. Osei

Sediment contamination by heavy metals resulting from anthropogenic activities is increasingly becoming a global concern due to the risk it poses to human well-being and ecological integrity at large. The purpose of this study was to assess the heavy metals loading in sediment along the Kawere stream. Ten sediment samples were collected, acid digested and analysed for copper (Cu), lead (Pb), cadmium (Cd), manganese (Mn), zinc (Zn), nickel (Ni), chromium (Cr), cobalt (Co) and iron (Fe) using a Varian AA240FS Atomic Absorption Spectrometer (AAS). The Australian and New Zealand Environment and Conservation Council (ANZECC) guidelines for freshwater sediment quality was used as the benchmark against which the measured metal concentrations were compared. Nemerow’s pollution and potential ecological risk indices were used to evaluate the pollution status and ecological risk levels of the heavy metals in the stream. The results obtained indicated that, except Cu which exceeded the ANZECC trigger value of 65 mg/kg at three sampling sites (K01=171.29 mg/kg, K05=170.83 mg/kg and K07=113.31 mg/kg), all other measured heavy metals concentrations were below their corresponding ANZECC values. Heavy metal pollution assessment showed that three samples (K01, K05 and K07) were slightly polluted, suggesting the likelihood of posing a health threat to the aquatic organisms and humans. Calculated Ecological Risk Index (RI) ranged from 3.229 to 19.750 (RI < 150), representing a low ecological risk. As such, the metals, Cu, Ni, Cd, Pb, Cr, and Zn pose a low ecological risk to the aquatic ecosystem. Although the ecological risk is low based on the current results, constant monitoring of the stream quality is recommended due to the increasing human activities along the stream as well as the sediments ability to accumulate and remobilise heavy metals back into the water column and possibly transferring them through the food chain.   Keywords: Heavy Metals, Sediment, Ecological Risk Assessment, Pollution, Stream


2021 ◽  
Author(s):  
Huaijie He ◽  
Ling Liu ◽  
Wenming Yan

Abstract Heavy metal and arsenic (As) concentrations in the overlying water of Lake WLSH from 2013-2017 to evaluate the water quality of the lake. Heavy metal and As concentrations in Lake WLSH surface sediment from studies performed between 2009-2017 were analyzed of heavy metal geo-accumulation, potential ecological risk and toxicity data for Lake WLSH surface sediment was performed to allow heavy metal and As pollution of Lake WLSH surface sediment to be described clearly, objectively, and comprehensively. The following four main conclusions were drawn. (1) The water quality index of the overlying water showed a tendency of slight pollution in the lake from 2013 to 2017. (2) Pollution by the heavy metals (Cu, Zn, Pb, Cd, Cr) and As in Lake WLSH should be given increased attention. (3) The geoaccumulation indices showed that Cd is the most critical pollutant and that the probabilities of Lake WLSH sediment being slightly polluted and moderately polluted were found to be 72.8% and 11.3%, respectively. (4) Cd is the main contributor (75.2%) to potential ecological risks, and although As is at a low toxicity level, its toxicity-risk contribution is higher than that of other metals (approximately 31%). (5) Positive matrix factorization (PMF) model results indicated that industrial and agricultural resources are the main suppliers of heavy metals to Lake WLSH sediment, contributing 43.2% and 42.6% of the heavy metals and As. The summarized results and conclusions can help the local government further understand heavy metals and As pollution in Lake WLSH and develop corresponding pollution-control measures. This study can also serve as a reference for future research on the heavy metals and As pollution of sediment in Lake WLSH and other lakes.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1060 ◽  
Author(s):  
Jinying Xu ◽  
Yuwei Chen ◽  
Lilin Zheng ◽  
Baogui Liu ◽  
Jinfu Liu ◽  
...  

Heavy metal pollution in sediment is one of the most serious problems in water bodies, including rivers, which can cause secondary pollution when environmental conditions change. In this study, surface sediment samples collected from the four main tributaries of Dongting Lake (i.e., Xiangjiang River (XR), Zishui River (ZR), Yuanjiang River (YR), and Lishui River (LR)) were analyzed for concentrations of Zn, Cr, Cu, As, Cd, and Pb. The spatial distribution, source, and potential ecological risk of these metals were determined. The results suggest a great spatial heterogeneity of heavy metals in the sediment of the studied rivers. Heavy metals had highest concentrations in the sediment of XR, especially midstream and downstream. A principal component analysis (PCA) and correlation analysis indicated that Cd and As were mainly from industrial wastewater and mineral mining, Cr came from natural process and agricultural activities, and Zn and Cu potentially from both. Pb was originated from atmospheric deposition and river inflow transportation. According to the geo-accumulation index ( I g e o ), enrichment factor (EF), and risk index (RI) assessment, heavy metals pollution was highest in the sediment of XR, and Cd was the main pollutant in the sediment of XR, presenting considerable potential ecological risk. This may contribute to heavy metal pollution in Dongting Lake. This paper provides a reference for the aquatic environmental management of heavy metals in Dongting Lake area and its tributaries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhifeng Huang ◽  
Saisai Zheng ◽  
Yan Liu ◽  
Xingru Zhao ◽  
Xiaocui Qiao ◽  
...  

AbstractMetal pollution in drinking water source has been under scrutiny as it seriously affects human health. This work examined 12 dissolved metals in the surface and overlying water of the Xiangjiang River, an important drinking water source in southern China, and characterized their distribution, identified their possible sources, assessed their toxicity load, and determined their potential ecological and health risk. No significant difference was found in the metal concentration between surface and overlying water. The average metal concentration fell in the order of Mg > Mn > Ba > Fe > Zn > As > Sb > Ni > Cd > V > Cr > Co, and all was lower than the safety threshold in the drinking water guideline of China. Anthropogenic activities were found to be the main source of metals from correlation analysis, principal component analysis (PCA), and cluster analysis (CA). According to the total heavy metal toxicity load (HMTL), 98.20%, 71.54%, 68.88%, and 7.97% of As, Cd, Sb, and Mn should be removed from the surface water to ensure safety. Most water samples from the surveyed area were found to have high ecological risk as was measured by the ecological risk index (RI). Health risk assessment showed that children are more susceptible than adults to the non-carcinogenic risk of dissolved metals, and the potential carcinogenic risk (CR) of As and Cd should be addressed. The results provide guidance for controlling the metal pollution of the Xiangjiang River and improving its quality as a drinking water source.


Author(s):  
Haotian Ma ◽  
Zhilei Zhen ◽  
Meixia Mi ◽  
Qian Wang

Abstract This study was aim to reveal the characteristics of nutrients and heavy metals associated with ecological risks in the sediments of Fenhe River, Taiyuan Section. The concentrations of nutrients (TN, TP, TOM) and heavy metals (As, Cu, Zn, Pb, Cr, Ni, Hg, Cd) were investigated. Spatial distribution, correlation analysis and source identification were facilitated to indicate nutrients and heavy metal pollution's characteristics. Evaluations of heavy metals’ contamination degree were achieved by comprehensive ecological risk indexes including Igeo, Iin, Cf, PLI and RI. The results showed that nutrients were accumulated in the middle part and were mainly from embryophyte, zooplankton and phytoplankton or algae based on C/N values. Large spatial variabilities existed in heavy metals distribution patterns and source identification of heavy metals were natural sources and anthropogenic activities based on PCA model. Results of different ecological risk indexes showed that pollution associated with Hg was rated as moderate ecological risk which was the significant contamination, higher ecological risks mainly existed in the middle part.


2021 ◽  
Vol 13 (7) ◽  
pp. 3719
Author(s):  
Jing Wei ◽  
Xiaogang Zheng ◽  
Jintong Liu ◽  
Guowei Zhang ◽  
Yanxi Zhang ◽  
...  

Our study area is the upstream watershed of the Guanting and Miyun Reservoirs; together, these two reservoirs comprise the main drinking water source of Beijing, China. In order to prevent crop contamination and preserve the quality of the water and soil, it is important to investigate the spatial distribution and the sources of the heavy metals in farmland soils on the watershed scale. For this study, we collected 23,851 farmland surface soil samples. Based on our analysis of the concentrations of eight heavy metals in these samples, we found that the overall soil quality in our study area is excellent, but that the Cd, Cu, Zn, and Cr contamination risks are relatively high. Moreover, a percentage of samples exceeded the Cd (1.54%,), Cu (0.28%), Zn (0.25%), Cr (0.13%), Pb (0.09%), As (0.05%), Ni (0.04%), and Hg (0.02%) risk screening values for soil contamination in agricultural land. In addition to determining the spatial distribution characteristics of the heavy metal concentrations of the soil samples, we also conducted a factor analysis and an R cluster analysis (CA) whcih can gathered the similar variables to track the sources of the heavy metals. We found that the Cd, Pb, and Zn are likely sourced from a quartz syenite porphyry body and from coal-fired enterprises, while the Cr, Cu, and Ni contaminations are mainly caused by runoff from iron ore smelting. Additionally, agricultural production contributes to the local accumulation of Cu, and industrial (smelting) discharge is partially responsible for the As contamination. As a result of the atmospheric deposition of pollutants, areas with high Hg concentrations are generally centered on large- and medium-sized cities. Due to these high natural heavy metal background values, the existing and future heavy metal contamination in the watershed poses a serious ecological risk to both the soil and the surface water.


Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 894
Author(s):  
Panfeng Liu ◽  
Chaojie Zheng ◽  
Meilan Wen ◽  
Xianrong Luo ◽  
Zhiqiang Wu ◽  
...  

The study deals with the spatio-temporal distribution of heavy metals in the sediments of Chagan lake, Northeast China. The pollution history of heavy metals is studied simultaneously through the 210Pb dating method by analyzing the characteristic of As, Hg, Cd, Cr, Ni, Cu, Pb, and Zn concentration-depth profiles. The potential ecological risk index (RI) and geo-accumulation index (Igeo) were used to evaluate the contamination degree. Principal component analysis (PCA), based on the logarithmic transformation and isometric log-ratio (ilr) transformed data, was applied with the aim of identifying the sources of heavy metals. The element concentrations show that the heavy metals are enriched in the surface sediment and sediment core with a varying degree, which is higher in the surficial residue. The results of Igeo indicate that the Cd and Hg in the surface sediment have reached a slightly contaminated level while other elements, uncontaminated. The results of RI show that the study area can be classified as an area with moderate ecological risk in which Cd and Hg mostly contribute to the overall risk. For the sediment core, the 210Pb dating results accurately reflect the sedimentary history over 153 years. From two evaluation indices (RI and Igeo) calculated by element concentration, there is no contamination, and the potential ecological risk is low during this period. The comparative study between raw and ilr transformed data shows that the closure effect of the raw data can be eliminated by ilr transformation. After that, the components obtained by robust principal component analysis (RPCA) are more representative than those obtained by PCA, both based on ilr transformed dataset, after eliminating the influence of outliers. Based on ilr transformed data with RPCA, three primary sources could be inferred: Cr, Ni, As, Zn, and Cu are mainly derived from natural sources; the main source of Cd and Hg are associated with agricultural activities and energy development; as for Pb, it originated from traffic and coal-burning activities, which is consistent with the fact that the development of tourism, fishery, and agriculture industries has led to the continuous increasing levels of anthropogenic Pb in Chagan Lake. The summarized results and conclusions will undoubtedly enhance the governmental awareness of heavy metal pollution and facilitate appropriate pollution control measures in Chagan Lake.


Sign in / Sign up

Export Citation Format

Share Document