scholarly journals The Prognostic Value of Risk Score Based on Immunogenenomic Landscape Analysis in Glioma

2020 ◽  
Author(s):  
Haitao Luo ◽  
Kai Huang ◽  
Chuming Tao ◽  
Mioaojing Wu ◽  
Minhua Ye ◽  
...  

Abstract Background: Glioma is a lethal intracranial tumor, and inflammation plays an important role in the initiation and development of glioma. Hence, there is an urgent need to conduct a bioinformatics analysis of immune-related genes (IRGs) for glioma. The present study aims to explore the association of the risk score with clinical outcomes and predict the prognosis with glioma. Methods: In The Cancer Genome Atlas (TCGA) database, 462 low grade glioma (LGG) samples and 166 glioblastoma (GBM) samples were reviewed, and IRGs correlated with the prognosis were selected by performing a survival analysis and establishing a Cox regression model. The potential molecular mechanism of these IRGs were also explored with assistance of computational biology. The risk score based on seven survival-associated IRGs was determined with the help of the multivariable Cox analysis, the patients were divided into two subgroups according to their risk score. Results: It was found that these differentially expressed IRGs were involved with the cytokine-cytokine receptor through functional enrichment analysis. The risk score based on the seven IRGs (SSTR5、CXCL10、CCL13、SAA1、CCL21、CCL27 and HTR1A) performed well in predicting patient’s the overall survival (OS), and correlated with age, 1p/19q codeletion status, IDH status, and WHO grades, both in the training (TCGA) datasets and the validation ((Chinese Glioma Genome Atlas) CGGA) datasets. The risk score also could reflect infiltration through several types of immune cells. Conclusions: This present study screened some IRGs associated with the patient’s clinical characteristic and prognosis, connect to the immune repertoire, demonstrated the importance of the risk score as a promising biomarker for estimating the clinical prognosis of glioma.

2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer.Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an. Functional enrichment analysis was performed by Metascape.Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR, MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000).Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Yun Zhong ◽  
Zhe Liu ◽  
Dangchi Li ◽  
Qinyuan Liao ◽  
Jingao Li

Background. An increasing number of studies have indicated that the abnormal expression of certain long noncoding RNAs (lncRNAs) is linked to the overall survival (OS) of patients with myeloma. Methods. Gene expression data of myeloma patients were downloaded from the Gene Expression Omnibus (GEO) database (GSE4581 and GSE57317). Cox regression analysis, Kaplan-Meier, and receiver operating characteristic (ROC) analysis were performed to construct and validate the prediction model. Single sample gene set enrichment (ssGSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to predict the function of a specified lncRNA. Results. In this study, a seven-lncRNA signature was identified and used to construct a risk score system for myeloma prognosis. This system was used to stratify patients with different survival rates in the training set into high-risk and low-risk groups. Test set, the entire test set, the external validation set, and the myeloma subtype achieved the authentication of the results. In addition, functional enrichment analysis indicated that 7 prognostic lncRNAs may be involved in the tumorigenesis of myeloma through cancer-related pathways and biological processes. The results of the immune score showed that IF_I was negatively correlated with the risk score. Compared with the published gene signature, the 7-lncRNA model has a higher C-index (above 0.8). Conclusion. In summary, our data provide evidence that seven lncRNAs could be used as independent biomarkers to predict the prognosis of myeloma, which also indicated that these 7 lncRNAs may be involved in the progression of myeloma.


2020 ◽  
Author(s):  
Yang Wang ◽  
Chengping Hu

Abstract Background: Long non-coding RNAs (lncRNAs) have been reported to play essential roles in tumorigenesis and cancers prognosis, and they can be a potential cancer prognostic markers. However, in lung adenocarcinoma(LUAD), how lncRNA signatures predict the survival of patients is poorly understood. Our study aims to explore lncRNA signatures and prognostic function in LUAD.Methods: The expression and prognosis data of lncRNAs in LUAD patients was collected from the Cancer Genome Atlas (TCGA) data. All analyses were performed using the R package (version 3.6.2). Metascape, STRING and Cytoscape were used for enrichment analysis and function prediction of the lncRNA co-expressed protein-coding genes.Results: We have collected lncRNA expression data in 466 LUAD tumors, and a six-lncRNA signature(RP11-79H23.3, RP11-309M7.1, CTD-2357A8.3, RP11-108P20.4, U47924.29, LHFPL3-AS2) has been shown to be significantly related to LUAD patients’ overall survival. According to the lncRNA signatures, the high-risk and low-risk groups were divided in LUAD patients with different survival rates. Further multivariable cox regression analysis showed that the prognostic value of this signature was independent of clinical factors. The potential functional roles and hub co-expressed protein-coding genes in the six prognostic lncRNAs are shown in the functional enrichment analysis.Conclusions: These results showed that these six lncRNAs could be independent predicted prognostic biomarkers in LUAD patients.


2021 ◽  
Author(s):  
Xiaoyu Ji ◽  
Guangdi Chu ◽  
Jinwen Jiao ◽  
Teng Lv ◽  
Yulong Chen ◽  
...  

Abstract Objective: Cervical cancer (CC) is one of the most common types of malignant female cancer, and its incidence and mortality are not optimistic. Protein panels can be a powerful prognostic factor for many types of cancer. The purpose of our study was to investigate a proteomic panel to predict survival of patients with common CC. Methods and results: The protein expression and clinicopathological data of CC were downloaded from The Cancer Proteome Atlas (TCPA) and The Cancer Genome Atlas (TCGA) database, respectively. We selected the prognosis-related proteins (PRPs) by univariate Cox regression analysis and found that the results of functional enrichment analysis were mainly related to apoptosis. We used Kaplan–Meier(K-M) analysis and multivariable Cox regression analysis further to screen PRPs to establish a prognostic model, including BCL2, SMAD3, and 4EBP1-pT70. The signature was verified to be independent predictors of OS by Cox regression analysis and the Area Under Curves. Nomogram and subgroup classification were established based on the signature to verify its clinical application. Furthermore, we looked for the co-expressed proteins of three-protein panel as potential prognostic proteins.Conclusion: A proteomic signature independently predicted OS of CC patients, and the predictive ability was better than the clinicopathological characteristics. This signature can help improve prediction for clinical outcome and provides new targets for CC treatment.


Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582094207
Author(s):  
Yi-qi Jin ◽  
Dong-liu Miao

Background: Epigenetic alterations have been shown to lead to human carcinogenesis. The aim of this study was to perform an integrative analysis to develop an epigenetic signature to predict overall survival (OS) of esophageal cancer. Methods: DNA methylation and messenger RNA expression data of esophageal cancer samples were downloaded from The Cancer Genome Atlas database and were incorporated and analyzed using an R package MethylMix. Functional enrichment analysis of the methylation-related differentially expressed genes (DEGs) was performed. Epigenetic signature and nomogram associated with the OS of esophageal cancer were established by the multivariate Cox model. Results: A total of 71 methylation-related DEGs were identified. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that these genes were involved in the biological process related to the initiation and progression of esophageal cancer. Two-gene (FAM24B and FAM200A) risk signature for OS was developed by multivariate Cox analysis, of which had high accuracy. The signature is independent of clinicopathological variables and indicated better predictive power than other clinicopathological variables. Moreover, we developed a novel prognostic nomogram based on risk score and 3 clinicopathological factors. Conclusions: Our study indicated possible methylation-related DEGs and established an epigenetic signature, which may provide novel insights for understanding the pathogenesis of esophageal cancer.


2021 ◽  
Vol 20 ◽  
pp. 153303382199208
Author(s):  
Wentao Liu ◽  
Jiaxuan Zou ◽  
Rijun Ren ◽  
Jingping Liu ◽  
Gentang Zhang ◽  
...  

Aim: Low grade glioma (LGG) is a lethal brain cancer with relatively poor prognosis in young adults. Thus, this study was performed to develop novel molecular biomarkers to effectively predict the prognosis of LGG patients and finally guide treatment decisions. Methods: survival-related genes were determined by Kaplan-Meier survival analysis and multivariate Cox regression analysis using the expression and clinical data of 506 LGG patients from The Cancer Genome Atlas (TCGA) database and independently validated in a Chinese Glioma Genome Atlas (CGGA) dataset. A prognostic risk score was established based on a linear combination of 10 gene expression levels using the regression coefficients of the multivariate Cox regression models. GSEA was performed to analyze the altered signaling pathways between the high and low risk groups stratified by median risk score. Results: We identified a total of 1489 genes significantly correlated with patients’ prognosis in LGG. The top 5 protective genes were DISP2, CKMT1B, AQP7, GPR162 and CHGB, the top 5 risk genes were SP1, EYA3, ZSCAN20, ITPRIPL1 and ZNF217 in LGG. The risk score was predictive of poor overall survival and relapse-free survival in LGG patients. Pathways of small cell lung cancer, pathways in cancer, chronic myeloid leukemia, colorectal cancer were the top 4 most enriched pathways in the high risk group. SP1, EYA3, ZSCAN20, ITPRIPL1, ZNF217 and GPR162 were significantly up-regulated, while DISP2, CKMT1B, AQP7 were down-regulated in 523 LGG tissues as compared to 1141 normal brain controls. Conclusions: The 10-gene signature may become novel prognostic and diagnostic biomarkers to considerably improve the prognostic prediction in LGG.


2021 ◽  
Author(s):  
Xue Zhou ◽  
Xiaowei Zhu ◽  
Junchao Yao ◽  
Xue Wang ◽  
Ning Wang

Abstract Pancreatic cancer (PC) is one of the most lethal human solid malignancies with devastating prognosis, making biomarker detection considerably important. Immune infiltrates in microenvironment is associated with patients’ survival in PC. The role of TPM4 (Tropomyosin 4) gene in PC has not been reported. Our study first identifies TPM4 expression and its potential biological functions in PC. The potential oncogenic roles of TPM4 was examined using the datasets of TCGA (The cancer genome atlas) and GEO (Gene expression omnibus). We investigated the clinical significance and prognostic value of TPM4 gene based on The Gene Expression Profiling Interactive Analysis (GEPIA) and survival analysis. TIMER and TISIDB databases were used to analyze the correlations between TPM4 gene and tumor-infiltrating immune cells. We found that the expression level of TPM4 was upregulated in PC malignant tissues with the corresponding normal tissues as controls. High TPM4 expression was correlated with the worse clinicopathological features and poor prognosis in PC cohorts. The positive association between TPM4 expression and tumor-infiltrating immune cells was identified in tumor microenvironment (TME). Moreover, functional enrichment analysis suggested that TPM4 might participate in cell adhesion and promote tumor cell migration. This is the first comprehensive study to disclose that TPM4 may serve as a novel prognostic biomarker associating with immune infiltrates and provide a potential therapeutic target for the treatment of PC.This study is not a clinical trial without the registration number.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9847
Author(s):  
Yandong Miao ◽  
Qiutian Li ◽  
Jiangtao Wang ◽  
Wuxia Quan ◽  
Chen Li ◽  
...  

Colorectal cancer (CRC) is one of the most common and deadly malignancies. Novel biomarkers for the diagnosis and prognosis of this disease must be identified. Besides, metabolism plays an essential role in the occurrence and development of CRC. This article aims to identify some critical prognosis-related metabolic genes (PRMGs) and construct a prognosis model of CRC patients for clinical use. We obtained the expression profiles of CRC from The Cancer Genome Atlas database (TCGA), then identified differentially expressed PRMGs by R and Perl software. Hub genes were filtered out by univariate Cox analysis and least absolute shrinkage and selection operator Cox analysis. We used functional enrichment analysis methods, such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis, to identify involved signaling pathways of PRMGs. The nomogram predicted overall survival (OS). Calibration traces were used to evaluate the consistency between the actual and the predicted survival rate. Finally, a prognostic model was constructed based on six metabolic genes (NAT2, XDH, GPX3, AKR1C4, SPHK1, and ADCY5), and the risk score was an independent prognostic prognosticator. Genetic expression and risk score were significantly correlated with clinicopathologic characteristics of CRC. A nomogram based on the clinicopathological feature of CRC and risk score accurately predicted the OS of individual CRC cancer patients. We also validated the results in the independent colorectal cancer cohorts GSE39582 and GSE87211. Our study demonstrates that the risk score is an independent prognostic biomarker and is closely correlated with the malignant clinicopathological characteristics of CRC patients. We also determined some metabolic genes associated with the survival and clinical stage of CRC as potential biomarkers for CRC diagnosis and treatment.


2020 ◽  
Author(s):  
Buwei Teng ◽  
Yuhan Yang ◽  
Zengya Guo ◽  
Kundong Zhang ◽  
Xiaofeng Wang ◽  
...  

Abstract Background:Pancreatic cancer (PC) is one of the most common cancers,which has poor prognosis.At present, abundant genetic PC samples can be obtained from The Cancer Genome Atlas (TCGA) database to finish comprehensive and reliable immunogenomic analysis. Thus, there is an urgent need to systematically explore the immunogenome of PC to obtain good prognosis.Methods: In this study, according to TCGA and The Genotype-Tissue Expression (GTEx) databases, we investigated the different compositions of leukocytes between PC and normal pancreas tissues, and analyzed the expressions of immune-related genes (IRGs) and the overall survival (OS) of 178 PC patients. Subsequently, computational difference algorithm and COX regression analyses were employed to assess the differentially expressed and OS-related IRGs in PC patients. Moreover, the underlying action mechanisms and properties of these IRGs were investigated by using computational biology. Finally, multivariable COX analysis was used to develop a novel prognostic biomarker for PC according to these IRGs.Results:The results showed that CD4+ memory T cells and M0 macrophages were more common and highly dominated in PC tissues relative to the non-tumor tissues. Functional enrichment analysis demonstrated that the differentially expressed and OS‐related IRGs were actively involved in the PI3K-Akt signaling pathway. A prognostic signature according to these differentially expressed IRGs (CD2AP, IL20RB, MYEOV, NUSAP1, PCDH1, RAB27B, TNFSF10, TOP2A, TPX2, TYK2, WNT7A and BUB1B) was moderately used for prognostic predictions. Further study indicated that RAB27B was negatively related to CD4 T cells while TYK2 was positively correlated with CD4 T cells. Conclusions: Taken together, this study screened several significant IRGs, demonstrated the drivers of immune repertoire, and indicated the importance of these PC-specific IRGs in the prognosis of PC.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9038 ◽  
Author(s):  
Yixin Tian ◽  
Yiquan Ke ◽  
Yanxia Ma

Glioma is one of the most fatal tumors in central nervous system. Previous studies gradually revealed the association between tumor microenvironment and the prognosis of gliomas patients. However, the correlation between tumor-infiltrating immune cell and stromal signatures are unknown. In our study, we obtained gliomas samples from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA). The landscape of tumor infiltrating immune cell subtypes in gliomas was calculated by CIBERSORT. As a result, we found high infiltration of macrophages was correlated with poor outcome (P < 0.05). Then functional enrichment analysis of high/low macrophage-infiltrating groups was performed by GSEA. The results showed three gene sets includes 102 core genes about angiogenesis were detected in high macrophage-infiltrating group. Next, we constructed PPI network and analyzed prognostic value of 102 core genes. We found that five stromal signatures indicated poor prognosis which including HSPG2, FOXF1, KDR, COL3A1, SRPX2 (P < 0.05). Five stromal signatures were adopted to construct a classifier. The classifier showed powerful predictive ability (AUC = 0.748). Patients with a high risk score showed poor survival. Finally, we validated this classifier in TCGA and the result was consistent with CGGA. Our investigation of tumor microenvironment in gliomas may stimulate the new strategy in immunotherapy. Five stromal signature correlated with poor prognosis also provide a strong predator of gliomas patient outcome.


Sign in / Sign up

Export Citation Format

Share Document