scholarly journals MicroRNA-491-5p inhibit gastric cancer development by targeting EMT, cell adhesion genes and IFITM2

2020 ◽  
Author(s):  
zhijian Wei ◽  
lixiang Zhang ◽  
angqing Li ◽  
chuanhong li ◽  
wenxiu han ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the deadliest cancers in China. And, it can be regulated by MicroRNAs (miRNAs) generally. miR-491-5p function as a tumor suppressor in different types of cancer, but we still don’t know the role of miR-491-5p in gastric cancer. Methods: Functional experiments including CCK-8 assay and transwell assay were performed. Furthermore, the underlying mechanism was explored through qRT-PCR and western blot assay. In addition, the function of miR-491-5p was also identified in vivo.Results: In this study, we found that high level of miR-491-5p caused a weak cell proliferation, migration and invasion abilities. In order to explore the role of miR-491-5p in vivo, we set a xenograft mouse model, and also found that high level of miR-491-5p suppressed tumor growth. Moreover, we found that miR-491-5p regulate the tumor development thought regulate the expression of EMT(Epithelial-mesenchymal transition), cell adhesion genes and IFITM2. Conclusions: These data show that miR-491-5p function as a tumor suppressor in GC both in vitro and in vivo.

2020 ◽  
Author(s):  
Zhijian Wei ◽  
Lixiang Zhang ◽  
Angqing Li ◽  
Chuanhong Li ◽  
Wenxiu Han ◽  
...  

Abstract Gastric cancer (GC) is one of the deadliest cancers in China. And, it can be regulated by MicroRNAs (miRNAs) generally. miR-491-5p function as a tumor suppressor in different types of cancer, but we still don’t know the role of miR-491-5p in gastric cancer. In this study, we found that high level of miR-491-5p caused a weak cell proliferation, migration and invasion abilities. In order to explore the role of miR-491-5p in vivo, we set a xenograft mouse model, and also found that high level of miR-491-5p suppressed tumor growth. Moreover, we found that miR-491-5p regulate the tumor development thought regulate the expression of EMT, cell adhesion genes and IFITM2. These data show that miR-491-5p function as a tumor suppressor in GC both in vitro and in vivo .


2017 ◽  
Vol 42 (3) ◽  
pp. 1025-1036 ◽  
Author(s):  
Dehu Chen ◽  
Guiyuan Liu ◽  
Ning Xu ◽  
Xiaolan You ◽  
Haihua Zhou ◽  
...  

Background/Aims: Gastric cancer (GC) is a common and lethal malignancy, and AMP-activated protein kinase-related kinase 5 (ARK5) has been discovered to promote cancer metastasis in certain types of cancer. In this study, we explored the role of ARK5 in GC invasion and metastasis. Methods: ARK5 and epithelial-mesenchymal transition (EMT)-related markers were determined by immunohistochemistry and western blot in GC specimens. Other methods including stably transfected against ARK5 into SGC7901 and AGS cells, western blot, migration and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. Results: The results demonstrated that ARK5 expression was increased and positively correlated with metastasis, EMT-related markers and poor prognosis in patients with GC. Knockdown of ARK5 expression remarkably suppressed GC cells invasion and metastasis via regulating EMT, rather than proliferation in vitro and in vivo. And knockdown of ARK5 expression in GC cells resulted in the down-regulation of the mTOR/p70S6k signals, Slug and SIP1. Conclusion: The elevated ARK5 expression was closely associated with cancer metastasis and patient survival, and it seemed to function in GC cells migration and invasion via EMT alteration, together with the alteration of the mTOR/p70S6k signals, Slug and SIP1, thus providing a potential therapeutic target for GC.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiajia Jiang ◽  
Rong Li ◽  
Junyi Wang ◽  
Jie Hou ◽  
Hui Qian ◽  
...  

Circular RNA CDR1as has been demonstrated to participate in various cancer progressions as miRNA sponges. The exact underlying mechanisms of CDR1as on gastric cancer (GC) metastasis remain unknown. Here, we found that CDR1as knockdown facilitated GC cell migration and invasion while its overexpression inhibited the migration and invasion abilities of GC cells in vitro and in vivo. Moreover, epithelial-mesenchymal transition- (EMT-) associated proteins and MMP2 and MMP9 were downregulated by CDR1as. Bioinformatics analysis combined with dual-luciferase reporter gene assays, western blot, RT-qPCR analysis, and functional rescue experiments demonstrated that CDR1as served as a miR-876-5p sponge and upregulated the target gene GNG7 expression to suppress GC metastasis. In summary, our findings indicate that CDR1as suppresses GC metastasis through the CDR1as/miR-876-5p/GNG7 axis.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1676
Author(s):  
Monserrat Olea-Flores ◽  
Juan C. Juárez-Cruz ◽  
Miriam D. Zuñiga-Eulogio ◽  
Erika Acosta ◽  
Eduardo García-Rodríguez ◽  
...  

Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial–mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.


2020 ◽  
Vol 10 (7) ◽  
pp. 930-938
Author(s):  
Dawei Zhang ◽  
Lin Xiong ◽  
Liang Li ◽  
Yuan Chen ◽  
Xiaojun Tang ◽  
...  

Objective: In order to investigate the effects of LMP1-Fab antibody on Nasopharyngeal carcinoma (NPC) cancer stem cells (CSCs). Methods/ Results: Methods were performed to study the effects of LMP1-Fab antibody on NPC CSCs in vivo and in vitro, for example, transwell chamber assay, wound healing assay, western blot assay, quantitative real-time PCR assay animal experiments, animal fluorescence imaging, H&E staining, immunohistochemistry. We identified that LMP1 activated the migration and invasion of NPC. Whereas the LMP1-Fab antibody inhibited cell invasion, epithelial-mesenchymal transition (EMT) and migration of NPC CSCs in LMP1+ HNE2 cells. Furthermore, LMP1-Fab antibody significantly increased the expression of E-cadherin, and reduced the expressions of vimentin,N -cadherin and Slug in LMP1+ HNE2 CSCs cells. Mechanistically, LMP1-Fab antibody inhibited lung and liver metastasis by regulating the wnt/ -catenin pathway in the nude mice. Conclusion: These results suggested that the novel antibody-targeting LMP1 is likely to be a potential strategy for the treatment of NPC.


2018 ◽  
Vol 96 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ping He ◽  
Xiaojie Jin

Objective: The aim of this study was to investigate the role of SOX10 in nasopharyngeal carcinoma (NPC) and the underlying molecular mechanisms. Methods: The expression of SOX10 was initially assessed in human NPC tissues and a series of NPC cell lines through quantitative real-time PCR (qRT-PCR) and Western blot. Then, cell proliferation, cycle, migration, and the invasiveness of NPC cells with knockdown of SOX10 were examined by MTT, flow cytometry, and Transwell migration and invasion assays, respectively. Finally, nude mice tumorigenicity experiments were performed to evaluate the effects of SOX10 on NPC growth and metastasis in vivo. Results: SOX10 was significantly increased in NPC tissues and cell lines. In-vitro experiments revealed that loss of SOX10 obviously inhibited cell proliferation, migration, and invasiveness, as well as the epithelial–mesenchymal transition (EMT) process in NPC cells. In-vivo experiments further demonstrated that disrupted SOX10 expression restrained NPC growth and metastasis, especially in lung and liver. Conclusion: Taken together, our data confirmed the role of SOX10 as an oncogene in NPC progression, and revealed that SOX10 may serve as a novel biomarker for diagnosis of NPC, as well as a potential therapeutic target against this disease.


2019 ◽  
Vol 30 (19) ◽  
pp. 2527-2534 ◽  
Author(s):  
Linsen Shi ◽  
Zhaoying Wu ◽  
Ji Miao ◽  
Shangce Du ◽  
Shichao Ai ◽  
...  

The accumulation of adenosine in the tumor microenvironment is associated with tumor progression in many cancers. However, whether adenosine is involved in gastric cancer (GC) metastasis and progression, and the underlying molecular mechanism, is largely unclear. In this study, we find that GC tissues and cell lines had higher A2aR levels than nontumor gastric tissues and cell lines. A2aR expression correlated positively with TNMstage, and associated with poor outcomes. Adenosine enhanced the expression of the stemness and epithelial–mesenchymal transition-associated genes by binding to A2aR. A2aR expression on GC cells promoted metastasis in vivo. The PI3K-AKT-mTOR signaling pathway was involved in adenosine-stimulated GC cell migration and invasion. Our results indicate that adenosine promotes GC cell invasion and metastasis by interacting with A2aR to enhance PI3K–AKT–mTOR pathway signaling.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ben Yue ◽  
Chenlong Song ◽  
Linxi Yang ◽  
Ran Cui ◽  
Xingwang Cheng ◽  
...  

Abstract Background As one of the most frequent chemical modifications in eukaryotic mRNAs, N6-methyladenosine (m6A) modification exerts important effects on mRNA stability, splicing, and translation. Recently, the regulatory role of m6A in tumorigenesis has been increasingly recognized. However, dysregulation of m6A and its functions in tumor epithelial-mesenchymal transition (EMT) and metastasis remain obscure. Methods qRT-PCR and immunohistochemistry were used to evaluate the expression of methyltransferase-like 3 (METTL3) in gastric cancer (GC). The effects of METTL3 on GC metastasis were investigated through in vitro and in vivo assays. The mechanism of METTL3 action was explored through transcriptome-sequencing, m6A-sequencing, m6A methylated RNA immunoprecipitation quantitative reverse transcription polymerase chain reaction (MeRIP qRT-PCR), confocal immunofluorescent assay, luciferase reporter assay, co-immunoprecipitation, RNA immunoprecipitation and chromatin immunoprecipitation assay. Results Here, we show that METTL3, a major RNA N6-adenosine methyltransferase, was upregulated in GC. Clinically, elevated METTL3 level was predictive of poor prognosis. Functionally, we found that METTL3 was required for the EMT process in vitro and for metastasis in vivo. Mechanistically, we unveiled the METTL3-mediated m6A modification profile in GC cells for the first time and identified zinc finger MYM-type containing 1 (ZMYM1) as a bona fide m6A target of METTL3. The m6A modification of ZMYM1 mRNA by METTL3 enhanced its stability relying on the “reader” protein HuR (also known as ELAVL1) dependent pathway. In addition, ZMYM1 bound to and mediated the repression of E-cadherin promoter by recruiting the CtBP/LSD1/CoREST complex, thus facilitating the EMT program and metastasis. Conclusions Collectively, our findings indicate the critical role of m6A modification in GC and uncover METTL3/ZMYM1/E-cadherin signaling as a potential therapeutic target in anti-metastatic strategy against GC.


Author(s):  
Zhongwei Wang ◽  
Yali Wang ◽  
Hongtao Ren ◽  
Yingying Jin ◽  
Ya Guo

Zinc and ring finger 3 (ZNRF3), which belongs to the E3 ubiquitin ligase family, is involved in the progression and development of cancer. However, the expression and function of ZNRF3 in human nasopharyngeal carcinoma (NPC) remain unclear. Thus, the aim of this study was to investigate the role of ZNRF3 in human NPC. Our results showed that ZNRF3 was downregulated in NPC cell lines. Restoration of ZNRF3 significantly inhibited the proliferation of NPC cells and tumor xenograft growth in vivo. In addition, overexpression of ZNRF3 suppressed migration and invasion, as well as attenuated the epithelial‐mesenchymal transition (EMT) process in NPC cells. Furthermore, restoration of ZNRF3 obviously downregulated the expression levels of β-catenin, cyclin D1, and c-Myc in NPC cells. In conclusion, these data suggest that ZNRF3 inhibited the metastasis and tumorigenesis via suppressing the Wnt/β-catenin signaling pathway in NPC cells. Thus, ZNRF3 may act as a novel molecular target for the treatment of NPC.


2020 ◽  
Vol 15 (1) ◽  
pp. 476-487
Author(s):  
Bin Xiao ◽  
Xusheng Zhang ◽  
Xiaojuan Li ◽  
Zhipeng Zhao

AbstractOsteosarcoma (OS) is a common malignant tumor in the world. Circular RNAs are endogenous non-coding RNAs that have been linked to the development of cancer. However, the role of circ_001569 in OS progression is still unclear. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of circ_001569, microRNA-185-5p (miR-185-5p) and flotillin-2 (FLOT2). The abilities of cell proliferation, migration and invasion were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and Transwell assays, respectively. Also, western blot analysis was performed to assess the levels of epithelial–mesenchymal transition (EMT)-related proteins and FLOT2 protein. Besides, the dual-luciferase reporter assay was used to verify the interactions among circ_001569, miR-185-5p and FLOT2. Circ_001569 expression was increased in OS tissues and cells, and its knockdown reduced the proliferation, migration, invasion and EMT of OS cells. MiR-185-5p could interact with circ_001569. Inhibition of miR-185-5p could recover the suppression effects of silenced-circ_001569 on the proliferation and metastasis of OS cells. Furthermore, FLOT2 was a target of miR-185-5p. Overexpressed FLOT2 could restore the inhibition effects of miR-185-5p mimic on the proliferation and metastasis of OS cells. Also, FLOT2 expression was regulated by circ_001569 and miR-185-5p. In addition, circ_001569 knockdown also reduced the OS tumor growth in vivo. Circ_001569 might act as an oncogene in OS progression by regulating the miR-185-5p/FLOT2 axis, which provided a reliable new approach for the treatment of OS patients.


Sign in / Sign up

Export Citation Format

Share Document