scholarly journals Dexamethasone can attenuate the pulmonary inflammatory response via regulation of the lncH19/miR-324-3p cascade

2020 ◽  
Author(s):  
Ye Chen ◽  
Chao Zhang ◽  
Changxue Xiao ◽  
Xiao-dong Li ◽  
Zhi-li Hu ◽  
...  

Abstract Objective: To investigate lncRNAs and their roles in regulating the pulmonary inflammatory response under treatment of Dexamethasone (Dex).Methods: IL-1β (10 ng/mL) and LPS (1 μg/mL) was used to induce an inflammatory cell model with A549 cells, and the results showed that IL-1β performed better against LPS. Dex with different concentration was used to attenuate inflammation by IL-1β, and its effect was assessed by RT-PCR to detect the inflammatory related mRNA, including IKβ-α, IKKβ, IL-6, IL-8, and TNF-α. And ELISA to detect the inflammatory cytokines TNF-α, IL-6 and IL-8. RT-PCR was used to quantify levels of lncRNAs, including lncMALAT1, lncHotair, lncH19, and lncNeat1. LncH19 was most closely correlated with the inflammatory response, which was induced by IL-1β and attenuated by Dex. Among the lncRNAs, the level of lncH19 exhibited the highest increase following treatment with 1 μM and 10 μM Dex. Therefore, lncH19 was selected for further function study. LncH19 expression was inhibited by shRNA transduced by lentivirus. Cell assays for cell proliferation and apoptosis as well as RT-PCR, western blot, and ELISA for inflammatory related genes were conducted to confirm the functions of lncH19. Predicted target miRNAs of lncH19 included the following: hsa-miR-346, hsa-miR-324-3p, hsa-miR-18a-3p, hsa-miR-18b-5p, hsa-miR-146b-3p, hsa-miR-19b-3p and hsa-miR-19a-3p. Following estimation by RT-PCR, hsa-miR-346, hsa-miR-18a-3p and hsa-miR-324-3p showed consistent patterns in A549 NC and A549 shlncH19. miRNA inhibitor was transfected into A549 NC and A549 shlncH19cells, and expression levels were determined by RT-PCR. Hsa-miR-324-3p was inhibited the most relative to hsa-miR-346 and hsa-miR-18a-3p and was subjected to further function study. RT-PCR, ELISA and western blotting for inflammatory related genes detection were conducted to validate the functions of the target hsa-miR-324-3p.Results: Dex with 1 μM and 10 μM were shown to be effective in attenuating the inflammatory response. During this process, lncH19 significantly increased in expression (P < 0.05). Dex with 1 μM was for further study. Under IL-1β treatment with or without Dex, the inhibition of lncH19 lead to an increase cell proliferation, a decrease in cell apoptosis, an increase in the protein level of inflammatory-related genes, the phosphorylation of P65, ICAM-1 and VCAM-1, and inflammatory cytokines. Following prediction of the targets of lncH19 and validation by RT-PCR, miR-346, miR-18a-3p and miR-324-3p were found to be negatively correlated to lncH19. Additionally, Dex increased the expression of lncH19, but the expression of the miRNAs was reduced. Among miRNAs, miR-324-3p was the most markedly down-regulated following treatment of miRNA inhibitors. The MTS assay and cell apoptosis assay showed that the miR-324-3p inhibitor inhibited cell proliferation and induced cell apoptosis, thereby significantly attenuating the inflammatory response, which reversed the effect of lncH19 in regulating cell proliferation and the secretion of inflammatory cytokines (P < 0.05). Therefore, lncH19 might regulate miR-324-3p during Dex treatment in pulmonary inflammatory response.Conclusion: Dex can attenuate the pulmonary inflammatory response via regulation of the lncH19/miR-324-3p cascade.

2020 ◽  
Author(s):  
Ye Chen ◽  
Chao Zhang ◽  
Changxue Xiao ◽  
Xiao-dong Li ◽  
Zhi-li Hu ◽  
...  

Abstract Objective: To investigate lncRNAs and their roles in regulating the inflammatory response under treatment of Dexamethasone (Dex) in asthma.Methods: IL-1 beta (10 ng/ml) and LPS (1 μg/ml) was used to induce an inflammatory cell model with A549 cells, and the results showed that IL-1 beta performed better against LPS. Dex with different concentration was used to attenuate inflammation by IL-1 beta, and its effect was assessed by RT-PCR to detect the inflammatory related mRNA, including IKbeta-alpha, IKKbeta, IL-6, IL-8, and TNF-alpha and ELISA to detect the inflammatory cytokines TNF-alpha, IL-6 and IL-8. RT-PCR was used to quantify levels of lncRNAs, including lncMALAT1, lncHotair, lncH19, and lncNeat1. lncH19 was most closely correlated with the inflammatory response, which was induced by IL-1beta and attenuated by Dex, Among the lncRNAs, the level of lncH19 exhibited the highest increase following treatment with 1 μM and 10 μM Dex. Therefore, lncH19 was selected for further function study. lncH19 expression was inhibited by shRNA transduced by lentivirus. Cell assays for cell proliferation and apoptosis as well as RT-PCR, western blot, and ELISA for inflammatory related genes were conducted to confirm the functions of lncH19. Predicted target miRNAs of lncH19 included the following: hsa-miR-346, hsa-miR-324-3p, hsa-miR-18a-3p, hsa-miR-18b-5p, hsa-miR-146b-3p, hsa-miR-19b-3p, and hsa-miR-19a-3p. Following estimation by RT-PCR, hsa-miR-346, hsa-miR-18a-3p, hsa-miR-324-3p showed consistent patterns in A549 NC and A549 shlncH19. miRNA inhibitor was transfected into A549 NC and A549 shlncH19 cells, and expression levels were determined by RT-PCR. hsa-miR-324-3p was inhibited the most relative to hsa-miR-346 and hsa-miR-18a-3p and was subjected to further function study. RT-PCR, ELISA and Western Blot for inflammatory related genes detection were conducted to validate the functions of the target hsa-miR-324-3p. Results: Dex with 1μM and 10 μM were shown to be effective in attenuating the inflammatory response. During this process, lncH19 significantly increased in expression (P < 0.05). Dex with 1μM was for further study. Under IL-1 beta treatment with or without Dex, the inhibition of lncH19 lead to an increase cell proliferation, a decrease in cell apoptosis, an increase in the protein level of inflammatory-related genes, and the phosphorylation of P65, ICAM-1, VCAM-1, and inflammatory cytokines. Following prediction of the targets of lncH19 and validation by RT-PCR, miR-346, miR-18a-3p, and miR-324-3p were found to be negatively correlated to lncH19. Additionally, Dex increased the expression of lncH19, but the expression of the aforementioned miRNAs was reduced. Among miRNAs, miR-324-3p was the most markedly down-regulated following treatment of miRNA inhibitors. The MTS assay and cell apoptosis assay showed that the miR-324-3p inhibitor inhibited cell proliferation and induced cell apoptosis, thereby significantly attenuating the inflammatory response, which reversed the effect of lncH19 in regulating cell proliferation and the secretion of inflammatory cytokines (P < 0.05). Therefore, lncH19 might regulate miR-324-3p during Dex treatment in inflammatory response of asthma.Conclusion: Dex can attenuate the inflammatory response in asthma via regulation of the lncH19/miR-324-3p cascade.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ye Chen ◽  
Chao Zhang ◽  
Chang-xue Xiao ◽  
Xiao-dong Li ◽  
Zhi-li Hu ◽  
...  

Abstract Objective To investigate lncRNAs and their roles in regulating the pulmonary inflammatory response under dexamethasone (Dex) treatment. Methods IL-1β (10 ng/mL) and LPS (1 μg/mL) was used to construct inflammatory cell models with A549 cells; IL-1β performed better against LPS. Different concentrations of Dex were used to attenuate the inflammation induced by IL-1β, and its effect was assessed via RT-PCR to detect inflammatory cytokine-related mRNA levels, including those of IKβ-α, IKKβ, IL-6, IL-8, and TNF-α. Furthermore, ELISA was used to detect the levels of the inflammatory cytokines TNF-α, IL-6, and IL-8. RT-PCR was used to quantify the levels of lncRNAs, including lncMALAT1, lncHotair, lncH19, and lncNeat1. LncH19 was most closely associated with the inflammatory response, which was induced by IL-1β and attenuated by Dex. Among the lncRNAs, the level of lncH19 showed the highest increase following treatment with 1 and 10 μM Dex. Therefore, lncH19 was selected for further functional studies. LncH19 expression was inhibited by shRNA transduced with lentivirus. Cell assays for cell proliferation and apoptosis as well as RT-PCR, western blot, and ELISA for inflammatory genes were conducted to confirm the functions of lncH19. The predicted target miRNAs of lncH19 were hsa-miR-346, hsa-miR-324-3p, hsa-miR-18a-3p, hsa-miR-18b-5p, hsa-miR-146b-3p, hsa-miR-19b-3p, and hsa-miR-19a-3p. Following estimation via RT-PCR, hsa-miR-346, hsa-miR-18a-3p, and hsa-miR-324-3p showed consistent patterns in A549 NC and A549 shlncH19. An miRNA inhibitor was transfected into A549 NC and A549 shlncH19 cells, and the expression levels were determined via RT-PCR. hsa-miR-324-3p was inhibited the most compared with hsa-miR-346 and hsa-miR-18a-3p and was subjected to further functional studies. RT-PCR, ELISA, and western blotting for inflammatory gene detection were conducted to validate the functions of the target hsa-miR-324-3p. Results Treatment with 1 and 10 μM Dex could effectively attenuate the inflammatory response. During this process, lncH19 expression significantly increased (P < 0.05). Therefore, treatment with 1 μM Dex was used for further study. Under IL-1β treatment with or without Dex, lncH19 inhibition led to an increase in cell proliferation; a decrease in cell apoptosis; an increase in the protein levels of inflammatory genes; phosphorylation of P65, ICAM-1, and VCAM-1; and increase inflammatory cytokines. Prediction of the targets of lncH19 and validation via RT-PCR revealed that miR-346, miR-18a-3p, and miR-324-3p negatively correlate with lncH19. Additionally, Dex increased the lncH19 expression but reduced that of the miRNAs. Among the miRNAs, miR-324-3p was the most markedly downregulated miRNA following treatment of miRNA inhibitors. The MTS assay and cell apoptosis assay showed that the miR-324-3p inhibitor inhibited cell proliferation and induced cell apoptosis, thereby significantly attenuating the inflammatory response, which reversed the effect of lncH19 in regulating cell proliferation and the secretion of inflammatory cytokines (P < 0.05). Therefore, lncH19 might regulate miR-324-3p in pulmonary inflammatory response under Dex treatment. Conclusion Dex can attenuate the pulmonary inflammatory response by regulating the lncH19/miR-324-3p cascade.


2020 ◽  
Author(s):  
Ye Chen ◽  
Chao Zhang ◽  
Chang-xue Xiao ◽  
Xiao-dong Li ◽  
Zhi-li Hu ◽  
...  

Abstract Objective: To investigate lncRNAs and their roles in regulating the pulmonary inflammatory response under dexamethasone (Dex) treatmentMethods: IL-1β (10 ng/mL) and LPS (1 μg/mL) was used to construct inflammatory cell models with A549 cells; IL-1β performed better against LPS. Different concentrations of Dex were used to attenuate the inflammation induced by IL-1β, and its effect was assessed via RT-PCR to detect inflammatory cytokine-related mRNA levels, including those of IKβ-α, IKKβ, IL-6, IL-8, and TNF-α. Furthermore, ELISA was used to detect the levels of the inflammatory cytokines TNF-α, IL-6, and IL-8. RT-PCR was used to quantify the levels of lncRNAs, including lncMALAT1, lncHotair, lncH19, and lncNeat1. LncH19 was most closely associated with the inflammatory response, which was induced by IL-1β and attenuated by Dex. Among the lncRNAs, the level of lncH19 showed the highest increase following treatment with 1 and 10 μM Dex. Therefore, lncH19 was selected for further functional studies. LncH19 expression was inhibited by shRNA transduced with lentivirus. Cell assays for cell proliferation and apoptosis as well as RT-PCR, western blot, and ELISA for inflammatory genes were conducted to confirm the functions of lncH19. The predicted target miRNAs of lncH19 were hsa-miR-346, hsa-miR-324-3p, hsa-miR-18a-3p, hsa-miR-18b-5p, hsa-miR-146b-3p, hsa-miR-19b-3p, and hsa-miR-19a-3p. Following estimation via RT-PCR, hsa-miR-346, hsa-miR-18a-3p, and hsa-miR-324-3p showed consistent patterns in A549 NC and A549 shlncH19. An miRNA inhibitor was transfected into A549 NC and A549 shlncH19 cells, and the expression levels were determined via RT-PCR. hsa-miR-324-3p was inhibited the most compared with hsa-miR-346 and hsa-miR-18a-3p and was subjected to further functional studies. RT-PCR, ELISA, and western blotting for inflammatory gene detection were conducted to validate the functions of the target hsa-miR-324-3p.Results: Treatment with 1 and 10 μM Dex could effectively attenuate the inflammatory response. During this process, lncH19 expression significantly increased (P < 0.05). Therefore, treatment with 1 µM Dex was used for further study. Under IL-1β treatment with or without Dex, lncH19 inhibition led to an increase in cell proliferation; a decrease in cell apoptosis; an increase in the protein levels of inflammatory genes; phosphorylation of P65, ICAM-1, and VCAM-1; and increase inflammatory cytokines. Prediction of the targets of lncH19 and validation via RT-PCR revealed that miR-346, miR-18a-3p, and miR-324-3p negatively correlate with lncH19. Additionally, Dex increased the lncH19 expression but reduced that of the miRNAs. Among the miRNAs, miR-324-3p was the most markedly downregulated miRNA following treatment of miRNA inhibitors. The MTS assay and cell apoptosis assay showed that the miR-324-3p inhibitor inhibited cell proliferation and induced cell apoptosis, thereby significantly attenuating the inflammatory response, which reversed the effect of lncH19 in regulating cell proliferation and the secretion of inflammatory cytokines (P < 0.05). Therefore, lncH19 might regulate miR-324-3p in pulmonary inflammatory response under Dex treatment.Conclusion: Dex can attenuate the pulmonary inflammatory response by regulating the lncH19/miR-324-3p cascade.


2020 ◽  
Author(s):  
Ye Chen ◽  
Chao Zhang ◽  
Changxue Xiao ◽  
Xiao-dong Li ◽  
Zhi-li Hu ◽  
...  

Abstract Objective To investigate lncRNAs and their roles in regulating the inflammatory response under treatment of Dexamethasone (Dex) in asthma. Methods IL-1beta (10 ng/ml) was used to induce an inflammatory cell model with A549 cells. Dex was used to attenuate inflammation by IL-1beta, and its effect was assessed by RT-PCR to detect the inflammatory cytokines IKbeta-alpha, IKKbeta,, IL-6, IL-8, and TNF-alpha and ELISA to detect the inflammatory cytokines TNF-alpha, IL-6 and IL-8. RT-PCR was used to quantify levels of lncRNAs, including lncMALAT1, lncHotair, lncH19, and lncNeat1. lncH19 was most closely correlated with the inflammatory response, which was induced by IL-1beta and attenuated by Dex, Thus, lncH19 was selected for further study. lncH19 expression was inhibited by shRNA transduced by lentivirus. Cell assays for cell viability and apoptosis as well as RT-PCR, western blot, and ELISA for inflammatory cytokines were conducted to confirm the functions of lncH19. Predicted target miRNAs of lncH19 included the following: hsa-miR-346, hsa-miR-324-3p, hsa-miR-18a-3p, hsa-miR-18b-5p, hsa-miR-146b-3p, hsa-miR-19b-3p, and hsa-miR-19a-3p. Following estimation by RT-PCR, hsa-miR-346, hsa-miR-18a-3p, hsa-miR-324-3p showed consistent patterns in A549 NC and A549 shlncH19. miRNA inhibitor was transfected into A549 cells, and expression levels were determined by RT-PCR. hsa-miR-324-3p was inhibited the most relative to hsa-miR-346 and hsa-miR-18a-3p and was subjected to further study. RT-PCR, ELISA and Western Blot for cytokine detection were conducted to validate the functions of the target hsa-miR-324-3p. Results Dex was shown to be effective in attenuating the inflammatory response. During this process, lncH19 significantly increased in expression ( P < 0.05). Under IL-1beta treatment with or without Dex, the inhibition of lncH19 lead to an increase cell viability, a decrease in cell apoptosis, an increase in the protein level of inflammatory-related genes, and the phosphorylation of P65, ICAM-1, VCAM-1, and inflammatory cytokines. Following prediction of the targets of lncH19 and validation by RT-PCR, miR-346, miR-18a-3p, and miR-324-3p were found to be negatively correlated to lncH19. Additionally, Dex increased the expression of lncH19, but the expression of the aforementioned miRNAs was reduced. Among miRNAs, miR-324-3p was the most markedly down-regulated following treatment of miRNA inhibitors. The MTS assay and cell apoptosis assay showed that the miR-324-3p inhibitor inhibited cell viability and induced cell apoptosis, thereby significantly attenuating the inflammatory response, which reversed the effect of lncH19 in regulating cell viability and the secretion of inflammatory cytokines ( P < 0.05). Therefore, lncH19 might regulate miR-324-3p during Dex treatment. Conclusion Dex can attenuate the inflammatory response via regulation of the lncH19/miR-324-3p cascade.


2021 ◽  
Author(s):  
Danyun Huang ◽  
Zhijun Li ◽  
Yue Chen ◽  
Yan Fan ◽  
Tao Yu

Abstract Background The activation of macrophages and the release of inflammatory cytokines are the main reasons for the progress of systemic lupus erythematosus (SLE). MicroRNA (miRNA)-124 is involved in the regulation of macrophages and is a key regulator of inflammation and immunity. Objective To explore whether paeoniflorin (PF) regulates the biological functions of macrophages depends on miR-124. Methods RT-PCR, WB, ELISA, CCK-8 and flow cytometry were used to evaluate that PF regulated the biological functions of THP-1 cells through miR-124. Results PF significantly inhibited the proliferation while promotes the apoptosis of THP-1 cells, and inhibited the release of IL-6, TNF-α and IL-1βin THP-1 cells. RT-PCR results shown that PF up-regulated the expression of miR-124 in THP-1 cells. Functional recovery experiments showed that compared with the LPS + mimic-NC group, LPS + miR-124 mimic significantly inhibited the proliferation and the release of IL-6, TNF-α and IL-1β, but promoted the apoptosis of THP-1 cells. In addition, compared with the LPS + PF + inhibitor-NC group, LPS + PF + miR-124 inhibitor significantly promoted the proliferation and the release of IL-6, TNF-α and IL-1β, but inhibited the apoptosis of THP-1 cells. Conclusions By down-regulating miR-124, PF inhibits the proliferation and inflammation of THP-1 cells, and promotes the apoptosis of THP-1 cells.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Hui Xu ◽  
Guobao Qi ◽  
Kunpeng Li ◽  
Keshi Yang ◽  
Dawei Luo ◽  
...  

Abstract Background Intervertebral disk degeneration (IVDD) contributes to low back pain. Increased cell apoptosis and inflammation, decreased extracellular matrix are associated with IVDD. Nuclear factor-kappa B (NF-κB) signaling pathway and inflammatory cytokines are implicated in the pathophysiology of IVDD. Methods In present study, we established a mechanical stretching stress-stimulated nucleus pulposus (NP) cell model. We knocked down NF-κB p65 by siRNA transfection to inhibit NF-κB and evaluated the effects of NF-κB inhibition on intervertebral disk degeneration. We applied the mechanical stretching stress on NP cells and inhibited NF-κB by siRNA, then evaluated the expression of inflammatory cytokines, matrix metalloproteinase (MMP), aggrecan, collagen II, and monitored viability and apoptosis of NP cells. Results Mechanical stretching stress induced the expression of TNF-α, IL-1β, NF-κB, MMP-3 and MMP-13, while inhibited the production of aggrecan and collagen II in NP cells. Mechanical stretching stress decreased the cell viability and induced apoptosis in NP cells. Inhibition of NF-κB by siRNA suppressed the production of TNF-α, IL-1β, NF-κB, MMP-3 and MMP-13, while upregulated the expression of aggrecan and collagen II in NP cells. Conclusions Inhibition of NF-κB by knocking down p65 suppressed over-mechanical stretching stress-induced cell apoptosis and promoted viability in NP cell. Inhibition of NF-κB suppressed inflammation and degeneration of NP cells in IVDD.


2021 ◽  

Acute pancreatitis, characterized by parenchymal cell death and inflammatory process of pancreas, is a lethal disease. USP15 (ubiquitin-specific peptidase 15) belongs to USP family and participates in the ubiquitination system. USP15 was implicated in inflammatory processes and involved in the tumor progression. However, the roles of USP15 in acute pancreatitis-associated inflammation and apoptosis have not been reported yet. Firstly, in vitro cell model of acute pancreatitis was established through incubation of AR42J with cerulein. Results showed that cerulein induced inflammatory response in AR42J with up-regulation of TNF-α, IL-6 and IL-1β. USP15 was up-regulated in cerulein-induced AR42J. Secondly, siRNA-mediated silence of USP15 reduced levels of TNF-α, IL-6 and IL-1β, and pcDNA-mediated over-expression of USP15 enhanced the levels of TNF-α, IL-6 and IL-1β. Moreover, cell apoptosis of cerulein-induced AR42J was suppressed by silence of USP15 with reduced cleaved caspase-3 and cleaved caspase-9, while promoted by USP15 over-expression. Lastly, silence of USP15 decreased protein expression of p65 phosphorylation and TAB (Transforming growth factor-β activated kinase-1 binding protein) 2/3 in cerulein-induced AR42J, while the protein expression was enhanced by USP15 over-expression. In conclusion, USP15 contributed to cerulein-induced AR42J inflammatory response and cells injury through regulation of TAB2/3/NF-κB pathway in acute pancreatitis.


2017 ◽  
Vol 42 (2) ◽  
pp. 506-518 ◽  
Author(s):  
Hong-Hui Yang ◽  
Yan Chen ◽  
Chuan-Yu Gao ◽  
Zhen-Tian Cui ◽  
Jian-Min Yao

Objective: This study explored the protective effects of the microRNA-126 (miR-126)-mediated PI3K/Akt/eNOS signaling pathway on human cardiac microvascular endothelial cells (HCMECs) against hypoxia/reoxygenation (H/R)-induced injury and the inflammatory response. Methods: Untreated HCMECs were selected for the control group. After H/R treatment and cell transfection, the HCMECs were assigned to the H/R, miR-126 mimic, mimic-negative control (NC), miR-126 inhibitor, inhibitor-NC, wortmannin (an inhibitor of PI3K) and miR-126 mimic + wortmannin groups. Super oxide dismutase (SOD), nitric oxide (NO), vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS) were measured utilizing commercial kits. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to detect miR-126 expression and the mRNA and protein expression of inflammatory factors. Western blotting was used to determine the expression of key members in the PI3K/Akt/eNOS signaling pathway. ACCK-8 assay and flow cytometry were employed to examine cell proliferation and apoptosis, respectively. The angiogenic ability in each group was detected by the lumen formation test. Results: Compared to the control group, p/t-PI3K, p/t-Akt and p/t-eNOS expression, NO, VEGF and SOD levels, cell proliferation and in vitro lumen formation ability were decreased, while the ROS content, interleukin (IL)-6, IL-10 and tumor necrosis factor (TNF)-α expression and cell apoptosis were significantly increased in the H/R, mimic-NC, miR-126 inhibitor, inhibitor-NC, wortmannin and miR-126 mimic + wortmannin groups. Additionally, in comparison with the H/R group, the miR-126 mimic group had elevated p/t-PI3K, p/t-Akt and p/t-eNOS expression, increased NO, VEGF and SOD contents, and strengthened cell proliferation and lumen formation abilities but also exhibited decreased ROS content, reduced IL-6, IL-10 and TNF-α expressions, and weakened cell apoptosis, while the miR-126 inhibitor and wortmannin group exhibited the opposite results. Furthermore, decreased p/t-PI3K, p/t-Akt and p/t-eNOS expressions, decreased NO, VEGF and SOD contents, cell proliferation and lumen formation abilities, as well as increased ROS content, increased IL-6, IL-10 and TNF-α expression, and increased cell apoptosis were observed in the miR-126 mimic + wortmannin group compared to themiR-126 mimic group. Conclusions: These findings indicated that miR-126 protects HCMECs from H/R-induced injury and inflammatory response by activating the PI3K/Akt/ eNOS signaling pathway.


2021 ◽  
Vol 19 ◽  
pp. 205873922110382
Author(s):  
Zheng Yan ◽  
Qing-Lan Huang ◽  
Jun Chen ◽  
Fan Liu ◽  
Yi Wei ◽  
...  

To investigate the effects and potential mechanisms of chicoric acid (CA) on LPS-induced inflammatory response in A549 cells. 0–800 μM CA was added to A549 cells to determine the toxicity of CA using MTT assay. Then, 2 μg/mL LPS and 50 μM CA were simultaneously added to A549 cells to investigate the effects of CA. In order to investigate the effects of miR-130a-3p and IGF-1 on LPS-induced A549 cells, cells were infected with inhibitor of miR-130a-3p and si RNA IGF-1. The levels of inflammatory cytokines such as IL-1β, IL-6, and TNF-α were measured by real-time RT-PCR and enzyme-linked immunosorbent (ELISA) assay. The IGF-1 pathway and NF-κB expression were measured using immunoblot assay. Moreover, a luciferase activity assay was used to indicate the binding site of miR-130a-3p on the 3′UTR of IGF-1. 0–50 μM CA had no toxicity on A549 cells. Thus, we chose 50 μM CA for the following study. CA attenuated the inflammatory response by LPS through decreasing IL-1β, IL-6, and TNF-α levels and increasing IGF-1/IGF-1R expression. Inhibition of miR-130a-3p reduced the inflammatory response and restored IGF-1/IGF-1R pathway induced by LPS. Furthermore, luciferase activity results indicated that miR-130a-3p directly targeted IGF-1 to regulate inflammatory response. CA alleviates LPS-induced inflammatory response through miR-130a-3p/IGF-1pathway in A549 cells.


2021 ◽  
Vol 30 ◽  
pp. 096368972098607
Author(s):  
Shi-Yuan Liu ◽  
Zhi-Yu Zhao ◽  
Zhe Qiao ◽  
Shao-Min Li ◽  
Wei-Ning Zhang

Long noncoding RNAs (lncRNAs) are increasingly recognized as indispensable components of the regulatory network in the progression of various cancers, including nonsmall cell lung cancer (NSCLC). The lncRNA prostate cancer associated transcript 1 (PCAT1) has been involved in tumorigenesis of multiple malignant solid tumors, but it is largely unknown that what is the role of lncRNA-PCAT1 and how it functions in the progression of lung cancer. Herein, we observed that lncRNA PCAT1 expression was upregulated in both human NSCLC tissues and cell lines, which was determined by qualitative polymerase chain reaction analysis. Then, gain-and loss-of-function manipulations were performed in A549 cells by transfection with a specific short interfering RNA against PCAT1 or a pcDNA-PCAT1 expression vector. The results showed that PCAT1 not only promoted NSCLC cell proliferation and invasion but also inhibited cell apoptosis. Bioinformatics and expression correlation analyses revealed that there was a potential interaction between PCAT1 and the dyskerin pseudouridine synthase 1 (DKC1) protein, an RNA-binding protein. Then, RNA pull-down assays with biotinylated probes and transcripts both confirmed that PCAT1 directly bounds with DKC1 that could also promote NSCLC cell proliferation and invasion and inhibit cell apoptosis. Moreover, the effects of PCAT1 and DKC1 on NSCLC functions are synergistic. Furthermore, PCAT1 and DKC1 activated the vascular endothelial growth factor (VEGF)/protein kinase B (AKT)/Bcl-2/caspase9 pathway in NSCLC cells, and inhibition of epidermal growth factor receptor, AKT, or Bcl-2 could eliminate the effect of PCAT1/DKC1 co-overexpression on NSCLC cell behaviors. In conclusion, lncRNA PCAT1 interacts with DKC1 to regulate proliferation, invasion, and apoptosis in NSCLC cells via the VEGF/AKT/Bcl-2/caspase9 pathway.


Sign in / Sign up

Export Citation Format

Share Document