scholarly journals Mir10a overexpression aggravates the renal ischemia-reperfusion injury associated with a decrease in PIK3CA

2020 ◽  
Author(s):  
Dongsheng Xu ◽  
Wenjun Li ◽  
Tao Zhang ◽  
Gang Wang

Abstract Background: To investigate the effect of miR-10a on the renal tissues with ischemia-reperfusion (I/R) injury in rats and explore the underlying mechanisms of miR-10a in the HK-2 cells of hypoxia-reoxygenation. Methods: The miR-10a level was measured in renal tissues with I/R rats by RT-PCR. In order to research the role of miR-10a in the renal tissues, miR-10 agonist and miR-10a antagonist were used to treat I/R rats. The levels of serum creatinine (Scr) and blood urea nitrogen (BUN) in serum, renal histopathology, apoptosis of cells in renal tissues were analyzed, separately. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway related proteins were measured by Western blot. The HK-2 cell was cultured to study the mechanism of miR-10a in the model of hypoxia-reoxygenation. The dual luciferase reporter gene assay was used to confirm the PI3K p100 catalytic subunit α (PIK3CA) was a target gene of miR-10a. Results: After renal I/R injury in rats, the miR-10a expression was significantly increased (p<0.05). Injection of miR-10a agonist significantly aggravated the injury of renal and raised the apoptosis of cells in renal in rats with renal I/R injury (p<0.05). However, administration of miR-10a antagonist obviously improved the injury of renal, decreased the renal cells apoptosis and inhibited the PI3K/Akt pathway activity (p<0.05). In vitro experiments, the negative relation between PIK3CA and miR-10a was confirmed. Further, overexpression of miR-10a significantly decreased the proliferation of HK-2 cells, and increased the cells apoptosis via up-regulating PI3K/Akt pathway (p<0.05). Conclusion: miR-10a could aggravate the renal I/R injury associated with a decrease in PIK3CA/PI3K/Akt pathway.

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Hang Wang ◽  
Wayne Lau ◽  
Erhe Gao ◽  
Walter Koch ◽  
Xin Ma ◽  
...  

Myocardial ischemic/reperfusion (MI/R) injury is significantly enhanced in diabetes by incompletely understood mechanisms. Recent clinical and experimental studies demonstrate that hypoadiponectinemia during diabetes enhances oxidative stress and exaggerates MI/R injury. However, molecular mechanisms responsible for hypoadiponectinemia-induced oxidative stress remain unknown. In a discovery-driven fashion, we determined the role of cardiac microRNAs in the MI/R response in adiponectin knockout (APNKO) mice. From 68 total miRNAs differentially expressed between APNKO and wild type (WT) mice, miRNA 449b was identified as the microRNA most relevant to oxidative stress and apoptosis. In cultured neonatal cardiomyocytes, miRNA 449b silencing inhibited hypoxia/reoxygenation-induced apoptosis, whereas miR-449b overexpression significantly increased oxidative stress and cardiomyocyte apoptosis. In APNKO mice, administration of anti-miR-449b decreased oxidative stress (-17.2±3.8%, p<0.05), reduced caspase-3 activity (-21.3±4.2%, p<0.05), attenuated myocardial apoptosis (-16.3±4.1%, p<0.05), and improved myocardial function (1.4±0.3 fold). To identify the downstream molecule regulated by miRNA 449b, we integrated transcriptomics and proteomics data with computational annotation data, and identified Nrf-1 as a miRNA 449b target. A luciferase reporter gene assay demonstrated that miRNA 449b inhibited Nrf-1 expression via Nrf-1 mRNA 3’UTR region binding. Finally, we demonstrated that miRNA 449b was significantly upregulated, Nrf-1 expression was significantly decreased, and the anti-oxidative molecule metallothionein (MT) was significantly inhibited in the diabetic heart subjected to MI/R. Administration of anti-miR-449b in diabetic animals upregulated Nrf-1 and MT expression, reduced oxidative stress, and improved cardiac function (P<0.01) after MI/R. Taken together, this study provides the first evidence that hypoadiponectinemia during diabetes causes cardiac miRNA-449b upregulation and subsequent downregulation of Nrf-1 and MT, thus enhancing oxidative stress and MI/R injury. MicroRNA 449b may represent a potential therapeutic target against diabetic heart disease.


2020 ◽  
Vol 319 (1) ◽  
pp. L1-L10
Author(s):  
Chunlin Ye ◽  
Wanghong Qi ◽  
Shaohua Dai ◽  
Guowen Zou ◽  
Weicheng Liu ◽  
...  

Lung ischemia-reperfusion (I/R) injury severely endangers human health, and recent studies have suggested that certain microRNAs (miRNAs) play important roles in this pathological phenomenon. The current study aimed to ascertain the ability of miR-223 to influence lung I/R injury by targeting hypoxia-inducible factor-2α (HIF2α). First, mouse models of lung I/R injury were established: during surgical procedures, pulmonary arteries and veins and unilateral pulmonary portal vessels were blocked and resuming bilateral pulmonary ventilation, followed by restoration of bipulmonary ventilation. In addition, a lung I/R injury cell model was constructed by exposure to hypoxic reoxygenation (H/R) in mouse pulmonary microvascular endothelial cells (PMVECs). Expression of miR-223, HIF2α, and β-catenin in tissues or cells was determined by RT-qPCR and Western blot analysis. Correlation between miR-223 and HIF2α was analyzed by dual luciferase reporter gene assay. Furthermore, lung tissue injury and mouse PMVEC apoptosis was evaluated by hematoxylin and eosin (H&E), TUNEL staining, and flow cytometry. Autophagosomes in cells were detected by light chain 3 immunofluorescence assay. miR-223 was expressed at a high level while HIF2α/β-catenin was downregulated in tissues and cells with lung I/R injury. Furthermore, miR-223 targeted and repressed HIF2α expression to downregulate β-catenin expression. The miR-223/HIF2α/β-catenin axis aggravated H/R injury in mouse PMVECs and lung I/R injury in mice by enhancing autophagy. Taken together, miR-223 inhibits HIF2α to repress β-catenin, thus contributing to autophagy to complicate lung I/R injury. These findings provide a promising therapeutic target for treating lung I/R injury.


2019 ◽  
Vol 45 (2) ◽  
pp. 310-321
Author(s):  
Yanli Yu ◽  
Haibin Fang ◽  
Zhen Qiu ◽  
Zhongyuan Xia ◽  
Bin Zhou

AbstractDocosahexaenoic acid (DHA) can alleviate cerebral ischemia/reperfusion injury by reducing blood–brain barrier permeability and maintaining its integrity, accompanied by an increased Ang-1/Ang-2 ratio; however, the underlying mechanisms of these effects remain unclear. Src-suppressed C kinase substrates (SSeCKS), a substrate of protein kinase C, plays an important role in maintaining cell junctions and cell morphology and regulating cell permeability. However, whether DHA can increase SSeCKS expression and then mediate the Ang-1/Ang-2 ratio still needs to be studied. Human cerebrovascular pericytes (HBVPs) cultured in vitro were divided into groups, treated with or without DHA along with SSeCKS siRNA to knockdown SSeCKS expression, and then subjected to 24 h of hypoxia followed by 6 h of reoxygenation. Cell viability; lactate dehydrogenase (LDH) release; and Ang-1, Ang-2 and VEGF activity were detected by using ELISA kits. The apoptosis rate was assessed by TUNEL flow cytometry. Expression of the SSeCKS, Ang-1, Ang-2 and VEGF proteins was evaluated by western blotting. Pretreatment with 10 μM or 40 μM DHA efficiently attenuated hypoxia/reoxygenation (H/R) injury by activating SSeCKS to increase the Ang-1/Ang-2 ratio and downregulate VEGF expression in HBVPs, as evidenced by decreased LDH release and apoptotic rates and increased HBVPs viability. Meanwhile, after we used SSeCKS siRNA to knock down SSeCKS protein expression, the protective effect of DHA on HBVPs following H/R injury was reversed. In conclusion, DHA can activate SSeCKS to increase the Ang-1/Ang-2 ratio and downregulate VEGF expression in HBVPs, thus reducing H/R injury.


2019 ◽  
Vol 10 ◽  
pp. 204062231986911 ◽  
Author(s):  
Dan-Qian Chen ◽  
Gang Cao ◽  
Hui Zhao ◽  
Lin Chen ◽  
Tian Yang ◽  
...  

Background: Acute kidney injury (AKI) is one of the major risk factors for progression to chronic kidney disease (CKD) and renal fibrosis. However, effective therapies remain poorly understood. Here, we examined the renoprotective effects of melatonin and poricoic acid A (PAA) isolated from the surface layer of Poria cocos, and investigated the effects of combined therapy on the interaction of TGF-β/Smad and Wnt/β-catenin in a rat model of renal ischemia-reperfusion injury (IRI) and hypoxia/reoxygenation (H/R) or TGF-β1-induced HK-2 cells. Methods: Western blot and immunohistochemical staining were used to examine protein expression, while qRT-PCR was used to examine mRNA expression. Coimmunoprecipitation, chromatin immunoprecipitation, RNA interference, and luciferase reporter gene analysis were employed to explore the mechanisms of PAA and melatonin’s renoprotective effects. Results: PAA and combined therapy exhibited renoprotective and antifibrotic effects, but the underlying mechanisms were different during AKI-to-CKD continuum. Melatonin suppressed Smad-dependent and Smad-independent pathways, while PAA selectively inhibited Smad3 phosphorylation through distrupting the interactions of Smad3 with TGFβRI and SARA. Further studies demonstrated that the inhibitory effects of melatonin and PAA were partially depended on Smad3, especially PAA. Melatonin and PAA also inhibited the Wnt/β-catenin pathway and its profibrotic downstream targets, and PAA performed better. We further determined that IRI induced a nuclear Smad3/β-catenin complex, while melatonin and PAA disturbed the interaction of Smad3 and β-catenin, and supplementing with PAA could enhance the inhibitory effects of melatonin on the TGF-β/Smad and Wnt/β-catenin pathways. Conclusions: Combined melatonin and PAA provides a promising therapeutic strategy to treat renal fibrosis during the AKI-to-CKD continuum.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xu Xiao ◽  
Zhigang Lu ◽  
Victor Lin ◽  
Adam May ◽  
Daniel H. Shaw ◽  
...  

In recent years, microRNAs (miRNAs) have received increasing attention for their role in ischemia/reperfusion injury (I/RI), and many miRNAs have been demonstrated to play a very important role in cardiac I/RI. The miRNA miR-24-3p is a tumor suppressor that regulates multiple tumors; however, it remains unclear whether the expression level of miR-24-3p is altered in cardiac cells under I/RI. In this study, we used mouse primary cardiomyocytes and the H9C2 cardiomyocyte cell line to perform in vitro stimulated ischemia/reperfusion (SI/R) and then detected miR-24-3p expression level using quantitative real-time PCR (qRT-PCR). We discovered that the expression of miR-24-3p was significantly increased in cardiomyocytes following SI/R, and that the miR-24-3p level was inversely correlated to the ischemia marker HIF-1a. Furthermore, we transfected cardiomyocytes with miR-24-3p mimic or inhibitor to explore the role of miR-24-3p in cardiomyocyte ischemia/reperfusion injury in vitro. We performed flow cytometry to detect the apoptotic rate of H9C2 cardiomyocytes and found that the transfection of miR-24-3p mimic resulted in the decrease of the apoptosis rate of cardiomyocytes after SI/R, whereas the transfection of miR-24-3p inhibitor increased the number of apoptotic cardiomyocytes. These data suggest that the overexpression of miR-24-3p could reduce in vitro myocardial cell apoptosis induced by I/R injury. Finally, we applied the dual luciferase reporter gene system to verify whether miR-24-3p targets the Keap1 gene, and found that the luciferase signal intensity from a vector carrying the Keap1 wild-type reporter gene was significantly reduced after transfection with miR-24-3p mimic. The Keap1 protein level was also reduced following the transfection of miR-24-3p. The results from this study suggest a novel function of miR-24-3p in protecting cardiomyocytes from ischemia/reperfusion injury by the activation of the Nrf2-Keap1 pathway.


2020 ◽  
Vol 20 (6) ◽  
pp. 715-723
Author(s):  
Natarajan Nandakumar ◽  
Pushparathinam Gopinath ◽  
Jacob Gopas ◽  
Kannoth M. Muraleedharan

Background: The authors investigated the NF-κB inhibitory role of three Benzisothiazolone (BIT) derivatives (1, 2 and 3) in Hodgkin’s Lymphoma cells (L428) which constitutively express activated NF-κB. All three compounds showed dose-dependent NF-κB inhibition (78.3, 70.7 and 34.6%) in the luciferase reporter gene assay and were found cytotoxic at IC50 values of 3.3μg/ml, 4.35μg/ml and 13.8μg/ml, respectively by the XTT assay. BIT 1and BIT 2 (but not BIT 3) suppressed both NF-κB subunits p50 and p65 in cytoplasmic and nuclear extracts in a concentration-dependent manner. Furthermore, BIT 1 showed a moderate synergistic effect with the standard chemotherapy drugs etoposide and doxorubicin, whereas BIT 2 and 3 showed a moderate additive effect to antagonistic effect. Cisplatin exhibited an antagonist effect on all the compounds tested under various concentrations, except in the case of 1.56μg/ml of BIT 3 with 0.156μg/ml of cisplatin. The compounds also inhibited the migration of adherent human lung adenocarcinoma cells (A549) in vitro. We conclude that especially BIT 1 and BIT 2 have in vitro anti-inflammatory and anti-cancer activities, which can be further investigated for future potential therapeutic use. Methods: Inspired by the electrophilic sulfur in Nuphar alkaloids, monomeric and dimeric benzisothiazolones were synthesized from dithiodibenzoic acid and their NF-κB inhibitory role was explored. NF-κB inhibition and cytotoxicity of the synthesized derivatives were studied using luciferase reporter gene assay and XTTassay. Immunocytochemistry studies were performed using L428 cells. Cell migration assay was conducted using the A549 cell line. L428 cells were used to conduct combination studies and the results were plotted using CompuSyn software. Results: Benzisothiazolone derivatives exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. Potent compounds showed suppression of both NF-κB subunits p50 and p65 in a concentrationdependent manner, both in cytoplasmic and nuclear extracts. Combination studies suggest that benzisothiazolone derivatives possess a synergistic effect with etoposide and doxorubicin. Furthermore, the compounds also inhibited the migration of A549 cells. Conclusion: Benzisothiazolones bearing one or two electrophilic sulfur atoms as part of the heterocyclic framework exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. In addition, these derivatives also exhibited a synergistic effect with etoposide and doxorubicin along with the ability to inhibit the migration of A549 cells. Our study suggests that BIT-based new chemical entities could lead to potential anticancer agents.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yong Li ◽  
Hongbo Zhang ◽  
Zhanhu Li ◽  
Xiaoju Yan ◽  
Yuan Li ◽  
...  

Abstract Background Myocardial ischemia reperfusion injury (MIRI) is defined as tissue injury in the pathological process of progressive aggravation in ischemic myocardium after the occurrence of acute coronary artery occlusion. Research has documented the involvement of microRNAs (miRs) in MIRI. However, there is obscure information about the role of miR-130a-5p in MIRI. Herein, this study aims to investigate the effect of miR-130a-5p on MIRI. Methods MIRI mouse models were established. Then, the cardiac function and hemodynamics were detected using ultrasonography and multiconductive physiological recorder. Functional assays in miR-130a-5p were adopted to test the degrees of oxidative stress, mitochondrial functions, inflammation and apoptosis. Hematoxylin and eosin (HE) staining was performed to validate the myocardial injury in mice. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was employed to assess the expression patterns of miR-130a-5p, high mobility group box (HMGB)2 and NF-κB. Then, dual-luciferase reporter gene assay was performed to elucidate the targeting relation between miR-130a-5p and HMGB2. Results Disrupted structural arrangement in MIRI mouse models was evident from HE staining. RT-qPCR revealed that overexpressed miR-130a-5p alleviated MIRI, MIRI-induced oxidative stress and mitochondrial disorder in the mice. Next, the targeting relation between miR-130a-5p and HMGB2 was ascertained. Overexpressed HMGB2 annulled the protective effects of miR-130a-5p in MIRI mice. Additionally, miR-130a-5p targets HMGB2 to downregulate the nuclear factor kappa-B (NF-κB) axis, mitigating the inflammatory injury induced by MIRI. Conclusion Our study demonstrated that miR-130a-5p suppresses MIRI by down-regulating the HMGB2/NF-κB axis. This investigation may provide novel insights for development of MIRI treatments.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Chong Huang ◽  
Yan Chen ◽  
Bin Lai ◽  
Yan-Xia Chen ◽  
Cheng-Yun Xu ◽  
...  

Abstract Background Acute kidney injury (AKI) is a major kidney disease with poor clinical outcome. SP1, a well-known transcription factor, plays a critical role in AKI and subsequent kidney repair through the regulation of various cell biologic processes. However, the underlying mechanism of SP1 in these pathological processes remain largely unknown. Methods An in vitro HK-2 cells with anoxia-reoxygenation injury model (In vitro simulated ischemic injury disease) and an in vivo rat renal ischemia-reperfusion injury model were used in this study. The expression levels of SP1, miR-205 and PTEN were detected by RT-qPCR, and the protein expression levels of SP1, p62, PTEN, AKT, p-AKT, LC3II, LC3I and Beclin-1 were assayed by western blot. Cell proliferation was assessed by MTT assay, and the cell apoptosis was detected by flow cytometry. The secretions of IL-6 and TNF-α were detected by ELISA. The targeted relationship between miR-205 and PTEN was confirmed by dual luciferase report assay. The expression and positioning of LC-3 were observed by immunofluorescence staining. TUNEL staining was used to detect cell apoptosis and immunohistochemical analysis was used to evaluate the expression of SP1 in renal tissue after ischemia-reperfusion injury in rats. Results The expression of PTEN was upregulated while SP1 and miR-205 were downregulated in renal ischemia-reperfusion injury. Overexpression of SP1 protected renal tubule cell against injury induced by ischemia-reperfusion via miR-205/PTEN/Akt pathway mediated autophagy. Overexpression of SP1 attenuated renal ischemia-reperfusion injury in rats. Conclusions SP1 overexpression restored autophagy to alleviate acute renal injury induced by ischemia-reperfusion through the miR-205/PTEN/Akt pathway.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Zhiyuan Lu ◽  
Dawei Wang ◽  
Xuming Wang ◽  
Jilong Zou ◽  
Jiabing Sun ◽  
...  

Abstract Background More and more studies have confirmed that miRNAs play an important role in maintaining bone remodeling and bone metabolism. This study investigated the expression level of miR-206 in the serum of osteoporosis (OP) patients and explored the effect and mechanism of miR-206 on the occurrence and development of osteoporosis. Methods 120 postmenopausal women were recruited, including 63 cases with OP and 57 women without OP. The levels of miR-206 were determined by qRT-PCR technology. Spearman correlation coefficient was used to evaluate the correlation of miR-206 with bone mineral density (BMD). An ROC curve was used to evaluate the diagnostic value of miR-206 in osteoporosis. The effects of miR-206 on cell proliferation and cell apoptosis of hFOBs were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter gene assay was used to confirm the interaction of miR-206 and the 3′UTR of HDAC4. Results Serum miR-206 had low expression level in osteoporosis patient group compared with control group. The expression level of serum miR-206 had diagnostic value for osteoporosis, and the serum miR-206 levels were positively correlated with BMD. The down-regulated miR-206 could inhibit cell proliferation and promote cell apoptosis. Luciferase analysis indicated that HDAC4 was the target gene of miR-206. Conclusions MiR-206 could be used as a new potential diagnostic biomarker for osteoporosis, and in in vitro cell experiments, miR-206 may regulate osteoblast cell proliferation and apoptosis by targeting HDAC4.


Sign in / Sign up

Export Citation Format

Share Document