scholarly journals One for All and All in One: Modified Silica Kit-based Protocol for simultaneous sample-specific Extraction of DNA from a Variety of Source Materials

2022 ◽  
Author(s):  
Wera M Schmerer

Abstract Protocols utilized for the extraction of DNA vary significantly with regards to steps involved and duration of the overall procedure due to material-specific requirements for ensuring the highest possible yield in recovery of DNA. This variation mostly affects aspects of sample preparation and digestion steps required to release the DNA from the sample material.In contexts such as the development of new PCR-based assays - which always includes a test of species-specificity - reference samples from a number of species are utilized, requiring extraction of DNA from a variety of source materials, each with their specific conditions for effective isolation of DNA.The method presented here follows the strategy of synchronizing sample material-specific aspects such as sample preparation and digestion in such a way that one common protocol can be utilized for the actual extraction and purification of the DNA, allowing for an overall more efficient extraction process, while maintaining optimized conditions for DNA recovery.

2021 ◽  
Vol 328 (1) ◽  
pp. 419-423
Author(s):  
Alexander Mansel ◽  
Karsten Franke

AbstractThe chemical separation of zirconium from lanthanides by liquid–liquid extraction is challenging but critical for medical and technological applications. Using the example of 89Zr, we optimize the liquid–liquid-extraction process by means of the radiotracer technique. We produced 89Zr by proton irradiation of a metallic yttrium target at a cyclotron. The purification of the radionuclide was performed by a UTEVA resin. 89Zr was separated in no-carrier-added form in a sulfuric acid solution. 89Zr was successfully used in solvent extraction tests with calixarenes for the separation of zirconium from lanthanides. This reaction is suitable for the efficient extraction and purification of lanthanides.


Author(s):  
Sara Díaz ◽  
Antonio N. Benítez ◽  
Sara Ramírez-Bolaños ◽  
Lidia Robaina ◽  
Zaida Ortega

AbstractThe aim of this work is the optimization of phenolic compound extraction from three by-products of banana crops (rachis, discarded banana, and banana’s pseudostem pulp), as a way to valorize them through a green extraction process. The influence of the temperature and aqueous ethanol concentration (Et-OH) on extract properties (total phenol content (TPC) and antioxidant activity) was firstly analyzed. 78 ℃ and ethanol concentrations close to 50% yielded the best results for the three materials. The equations obtained by the response surface methodology gave a satisfactory description of the experimental data, allowing optimizing the extraction conditions. Under optimized conditions, time influence was then assessed, although this parameter seemed not influence results. Among the three by-products, rachis extract (60% Et-OH, 78 ℃, and 30 min) presented the highest TPC (796 mg gallic acid/100 g of dried material) and antioxidant activity (6.51 mg Trolox equivalents/g of dried material), followed by discarded banana, and pseudostem pulp. Under the optimal conditions, experiments were performed at a larger scale, allowing to determine the extraction yields (EY) and to characterize the extracts. The highest EY was obtained for the rachis (26%), but the extract with the highest activity was obtained for discarded banana (50% Et-OH, 78 ℃, and 60 min), which presented a TPC of 27.26 mg/g extract corresponding to 54.59 mg Trolox equivalents/g extract. This study contributes to the valorization of banana crops residues as a source of polyphenolic compounds with bioactive functions that can be extracted under economic extraction conditions. Graphical abstract


Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 50
Author(s):  
Silvia Lazăr (Mistrianu) ◽  
Oana Emilia Constantin ◽  
Nicoleta Stănciuc ◽  
Iuliana Aprodu ◽  
Constantin Croitoru ◽  
...  

(1) Background: This study is designed to extract the bioactive compounds from beetroot peel for future use in the food industry. (2) Methods: Spectrophotometry techniques analyzed the effect of conventional solvent extraction on betalains and polyphenolic compounds from beetroot peels. Several treatments by varying for factors (ethanol and citric acid concentration, temperature, and time) were applied to the beetroot peel samples. A Central Composite Design (CCD) has been used to investigate the effect of the extraction parameters on the extraction steps and optimize the betalains and total polyphenols extraction from beetroot. A quadratic model was suggested for all the parameters analyzed and used. (3) Results: The maximum and minimum variables investigated in the experimental plan in the coded form are citric acid concentration (0.10–1.5%), ethanol concentration (10–50%), operating temperature (20–60 °C), and extraction time (15–50 min). The experimental design revealed variation in betalain content ranging from 0.29 to 1.44 mg/g DW, and the yield of polyphenolic varied from 1.64 to 2.74 mg/g DW. The optimized conditions for the maximum recovery of betalains and phenols were citric acid concentration 1.5%, ethanol concentration 50%, temperature 52.52 °C, and extraction time 49.9 min. (4) Conclusions: Overall, it can be noted that the extraction process can be improved by adjusting operating variables in order to maximize the model responses.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3956 ◽  
Author(s):  
Lu ◽  
Cui

Capsaicin, which mainly comes from pepper, exhibits anticancer, antioxidant, and anti-obesity properties. This work aims to construct a comprehensive technology for the extraction and purification of capsaicin from capsicum oleoresin. The tunable aqueous polymer phase impregnated HZ816 resins were selected in extraction step. In the extraction process, 3 g of impregnated HZ816 macroporous resin was employed per system. The results showed that a higher molecular weight of Polyethylene glycol (PEG) and 1-ethyl-3-methyl imidazolium acetate ([Emim] [OAc]) are more beneficial to the improvement of the yield of capsaicin. Screening experiment using fractional factorial designs indicated that the amount of sample loading, pH, and concentration of [Emim] [OAc] and PEG 6000 significantly affect the yield of capsaicin. Mathematical models of capsaicin yield in tunable aqueous polymer-phase impregnated resins were established and optimum condition was obtained using response surface methodology. The optimum impregnated phase was the polymer phase of an aqueous two-phase system which contained 18.5% (w/w) PEG6000, 15% (w/w) sodium citrate, and 10% (w/w) [Emim] [OAc] at pH 6.5. Under the optimal conditions, the yield of capsaicin reached 95.82% when the extraction system contains 0.25 g capsicum oleoresin. Ultimately, capsaicinoids extract was purified by reverse-phase resin (SKP-10-4300) chromatographic column. The capsaicin recovery and purity achieved 85% and 92%, respectively.


2009 ◽  
Vol 92 (4) ◽  
pp. 1136-1144 ◽  
Author(s):  
Tigst Demeke ◽  
Indira Ratnayaka ◽  
Anh Phan

Abstract The quality of DNA affects the accuracy and repeatability of quantitative PCR results. Different DNA extraction and purification methods were compared for quantification of Roundup Ready (RR) soybean (event 40-3-2) by real-time PCR. DNA was extracted using cetylmethylammonium bromide (CTAB), DNeasy Plant Mini Kit, and Wizard Magnetic DNA purification system for food. CTAB-extracted DNA was also purified using the Zymo (DNA Clean & Concentrator 25 kit), Qtip 100 (Qiagen Genomic-Tip 100/G), and QIAEX II Gel Extraction Kit. The CTAB extraction method provided the largest amount of DNA, and the Zymo purification kit resulted in the highest percentage of DNA recovery. The Abs260/280 and Abs260/230 ratios were less than the expected values for some of the DNA extraction and purification methods used, indicating the presence of substances that could inhibit PCR reactions. Real-time quantitative PCR results were affected by the DNA extraction and purification methods used. Further purification or dilution of the CTAB DNA was required for successful quantification of RR soybean. Less variability of quantitative PCR results was observed among experiments and replications for DNA extracted and/or purified by CTAB, CTAB+Zymo, CTAB+Qtip 100, and DNeasy methods. Correct and repeatable results for real-time PCR quantification of RR soybean were achieved using CTAB DNA purified with Zymo and Qtip 100 methods.


2015 ◽  
Vol 768 ◽  
pp. 15-24
Author(s):  
Pu Wang ◽  
Hui Ling Liu ◽  
Bing Wang ◽  
Xiu Wen Cheng ◽  
Qing Hua Chen ◽  
...  

In this study, a rapid and selective method has been developed to determine PENG residues in waste penicillium chrysogenum by using SPE cleanup strategy followed by HPLC. Furthermore, some parameters which influenced the extraction efficiency including extraction mode, solvent and time, while washing solution and eluting solution for SPE were systematically investigated. It should be noted that the extraction process was carried out in a single step by mixing the extraction solvent acetonitrile: formic acid in aqueous solution and chrysogenum samples under ultrasound. The SPE procedure was conducted using Oasis HLB as the clean up cartridge, n-hexane as washing solution, and mixture of acetonitrile and methanol as eluting solution. Under the optimized conditions, the linear of PENG are in the range of 0.1-2000 μg/mL, with the correlation was R2>0.99. In addition, the recoveries of PENG in these samples at three fortification levels of 800-1800mg/kg were 74.98% to 113.47% are obtained, respectively. Moreover, a limits of detection (0.006 mg/kg) and quantification (0.02 mg/kg) could be achieved.


2018 ◽  
Vol 97 (6) ◽  
pp. 2230-2238 ◽  
Author(s):  
N. Wang ◽  
Q. Xu ◽  
Y. Liu ◽  
Y. Jin ◽  
P.W. Harlina ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5563
Author(s):  
Luisa Bataglin Avila ◽  
Elis Regina Correa Barreto ◽  
Paloma Krolow de Souza ◽  
Bárbara De Zorzi Silva ◽  
Thamiris Renata Martiny ◽  
...  

This research investigated the bioactive potential of jaboticaba peel extract (JPE) and proposed an innovative material for food packaging based on carrageenan films incorporated with JPE. The extract was obtained through microwave assisted extraction (MAE) according to central composite rotational design and the optimized conditions showed a combined antimicrobial and antioxidant actions when the extraction process is accomplished at 80 °C and 1 min. The carrageenan film incorporated with JPE was manageable, homogeneous and the presence of JPE into film increased the thickness and improved the light barrier of the film. The results of solubility and mechanical properties did not show significant differences. The benefit of using MAE to improve the recovery of bioactive compounds was demonstrated and the carrageenan film with JPE showed a great strategy to add additives into food packaging.


2016 ◽  
Vol 88 (1-2) ◽  
pp. 29-36 ◽  
Author(s):  
Vânia G. Zuin

AbstractThe development and application of green analytical techniques aiming at the sample preparation of complex matrices for the study of organic compounds have been growing considerably over the last 15 years. Miniaturisation, automation and solventless techniques are gaining importance in this field, associated to others, as is the case of metrics. However, the unreflected use of the so-called green analytical techniques “might lead to doing the same things better, rather than rethinking solutions altogether”. Some limits and potentialities of the green sample preparation towards sustainable separations of organic compounds using the biorefinery concept will be also discussed in this paper, a promising biobased route that can integrate sustainable extraction and purification processes in a whole complete circular unity.


Sign in / Sign up

Export Citation Format

Share Document