scholarly journals Pueraria Flos Alleviates Alcoholic Liver Injury Via Regulation of PPARα and MAOA: Deciphering the Effective Forms and Potential Mechanism Based on a Bioinformatics-Integrated Metabolic Profile Strategy and Experimental Validation

Author(s):  
Jialin Qu ◽  
Qiuyue Chen ◽  
Tianfu Wei ◽  
Ning Dou ◽  
Dong Shang ◽  
...  

Abstract Background: Pueraria Flos, a representative medicinal and edible antidote for alcoholism, has rich clinical experience and remarkable curative effect in the treatment of alcoholic liver disease (ALD). However, its effective forms and hepatoprotective mechanism are remained unknown. Methods: A strategy based on UPLC-QTOF-MS combined with mass defect filtering technique was established for comprehensively identifying prototypes and metabolites absorbed and excreted into rat plasma, urine, bile and feces after oral administration. Then, the absorbed constituents with a relative high level were subjected to the network pharmacology, functional enrichment analysis and molecular docking to clarify the potential mechanism in the treatment of ALD. Furthermore, the therapeutic effect of PF on ALD and predicted mechanisms was further evaluated using a rat model of alcohol-induced liver injury and Western blot analysis. Results: 25 absorbed prototype constituents and 82 metabolites were identified or tentatively characterized with glucuronidation, sulfation, methylation, hydroxylation and reduction as their major metabolic pathways. The constructed absorbed constituent-target-pathway-disease network and docking analysis revealed that 4 metabolic components Te-7XG, genistein-7G-4'S, tectoridin-4'S and Te-7XG-4'S, 2 targets MAOA and PPARA, and 6 pathways related to lipid regulation and amino acid metabolism may play crucial roles in the PF mediated protection against ALD. An in vivo validation in rat further demonstrated that PF alleviated liver injury via activating and suppressing the PPARA and MAOA expression, respectively. Conclusions: The present results not only increase the understanding on the effective form and molecular mechanism of PF mediated protection against ALD, but also promote better application of PF as supplement food and herbal medicine for the treatment of ALD.

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiang Qian ◽  
Zhuo Chen ◽  
Sha Sha Chen ◽  
Lu Ming Liu ◽  
Ai Qin Zhang

The study aimed to clarify the potential immune-related targets and mechanisms of Qingyihuaji Formula (QYHJ) against pancreatic cancer (PC) through network pharmacology and weighted gene co-expression network analysis (WGCNA). Active ingredients of herbs in QYHJ were identified by the TCMSP database. Then, the putative targets of active ingredients were predicted with SwissTargetPrediction and the STITCH databases. The expression profiles of GSE32676 were downloaded from the GEO database. WGCNA was used to identify the co-expression modules. Besides, the putative targets, immune-related targets, and the critical module genes were mapped with the specific disease to select the overlapped genes (OGEs). Functional enrichment analysis of putative targets and OGEs was conducted. The overall survival (OS) analysis of OGEs was investigated using the Kaplan-Meier plotter. The relative expression and methylation levels of OGEs were detected in UALCAN, human protein atlas (HPA), Oncomine, DiseaseMeth version 2.0 and, MEXPRESS database, respectively. Gene set enrichment analysis (GSEA) was conducted to elucidate the key pathways of highly-expressed OGEs further. OS analyses found that 12 up-regulated OGEs, including CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and ERBB2 that could be utilized as potential diagnostic indicators for PC. Further, methylation analyses suggested that the abnormal up-regulation of these OGEs probably resulted from hypomethylation, and GSEA revealed the genes markedly related to cell cycle and proliferation of PC. This study identified CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and ERBB2 might be used as reliable immune-related biomarkers for prognosis of PC, which may be essential immunotherapies targets of QYHJ.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 73
Author(s):  
Juan Luis Peñas-Fuentes ◽  
Eva Siles ◽  
Eva E. Rufino-Palomares ◽  
Amalia Pérez-Jiménez ◽  
Fernando J. Reyes-Zurita ◽  
...  

Erythrodiol (EO) is a pentacyclic triterpenic alcohol found in olive tree leaves and olive oil, and it has important effects on the health properties and quality of olive oil. In this study, we characterized the cytotoxic effects of EO on human hepatocarcinoma (HepG2) cells by studying changes in cell viability, reactive oxygen species (ROS) production, antioxidant defense systems, and the proteome. The results reveal that EO markedly decreased HepG2 cell viability without changing ROS levels. The concentrations of glutathione and NADPH were significantly reduced, with selective changes in the activity of several antioxidant enzymes: glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase. Proteomic data reveal that EO led to the complete elimination or decreased abundance of 41 and 3 proteins, respectively, and the abundance of 29 proteins increased. The results of functional enrichment analysis show that important metabolic processes and the nuclear transport of mature mRNA were impaired, whereas AMP biosynthesis and cell cycle G2/M phase transition were induced. The transcription factors and miRNAs involved in this response were also identified. These potent antiproliferative effects make EO a good candidate for the further analysis of its hepatic antitumor effects in in vivo studies.


2021 ◽  
Author(s):  
Jie-wen Zhao ◽  
Hai-dong Liu ◽  
Ming-yin Man ◽  
Lv-ya Wang ◽  
Ning Li ◽  
...  

Abstract Background Qishen Yiqi Pills (QSYQP) is a traditional Chinese compound recipe. However, our understanding of its mechanism has been hindered due to the complexity of its components and targets. In this work, the network pharmacology-based approaches were used to explore QSYQP’s pharmacological mechanism on treating cardiovascular diseases (CVD). Results From ETCM and TCM MESH databases we collected QSYQP’s 333 active components and their 674 putative targets. We constructed the sub-network influence by CVD genes and found that 40% QSYQP targets appeared in 20 modules, in which QSYQP’s targets and CVD genes co-existed as hub nodes in the sub-network. Functional enrichment analysis suggested that the 42 key targets were mainly expressed in platelets, blood vessels, cardiomyocytes, and other tissues. The main signaling pathways regulated and controlled by the key targets were inflammation, immunity, blood coagulation and energy metabolism. Network and pathway analysis identified 7 key targets, which were regulated by 7 compounds of QSYQP. 26 of the 42 important targets, including the 7 key targets were verified by literature mining. Twelve pairs of interactions between key targets and QSYQP’s compounds were validated by molecular docking. Further validation experiments suggested that QSYQP suppressed H/R induced apoptosis and cytoskeleton disruption of cardiomyocytes. Western blotting showed that the expression of cardiovascular diseases-related genes including ACTC1, FoxO1 and DIAPH1 was significantly decreased by establishing the hypoxia-reoxygenation model in vitro, while the protein expression of experimental group was significantly increased by adding QSYQP or its ingredients. Conclusion These results indicated the correlation of QSYQP treatment to the therapeutic effects of CVD. At the molecular level, this study revealed the multicomponent and multitargeting mechanisms of QSYQP in the regulation and treatment of cardiovascular diseases, potentially providing a reference for the further utilization of QSYQP.


2020 ◽  
Author(s):  
Jialin Li ◽  
Hua Luo ◽  
Xinkui Liu ◽  
Jingyuan Zhang ◽  
Wei Zhou ◽  
...  

Abstract Background: Yuzhi Zhixue Granule (YZG)is a traditional Chinese patent medicine for treating excessive menstrual flow caused by ovulatory dysfunctional uterine bleeding (ODUB) accompanied by heat syndrome. However, the underlying molecular mechanisms, potential targets, and active ingredients of this prescription are still unknown. Therefore, it is imperative to explore the molecular mechanism of YZG.Methods: The active compounds in YZG were screened by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The putative targets of YZG were collected via TCMSP and Search Tool for Interacting Chemicals (STITCH) databases. The Therapeutic Target Database (TTD) and Pharmacogenomics Knowledgebase (PharmGKB) databases were used to identify the therapeutic targets of ODUB. A protein-protein interaction (PPI) network containing both the putative targets of YZG and known therapeutic targets of ODUB was built. Furthermore, bioinformatics resources from the database for annotation, visualization and integrated discovery (DAVID) were utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, molecular docking was performed to verify the binding effect between the YZG screened compounds and potential therapeutic target molecules.Results: The study employed a network pharmacology method, mainly containing target prediction, network construction, functional enrichment analysis, and molecular docking to systematically research the mechanisms of YZG in treating ODUB. The putative targets of YZG that treat ODUB mainly involved PTGS1, PTGS2, ALOX5, CASP3, LTA4H, F7 and F10. The functional enrichment analysis suggested that the produced therapeutic effect of YZG against ODUB is mediated by synergistical regulation of several biological pathways, including apoptosis arachidonic acid (AA) metabolism, serotonergic synapse, complement and coagulation cascades and C-type lectin receptor signaling pathways. Molecular docking simulation revealed good binding affinity of the seven putative targets with the corresponding compounds.Conclusion: This novel and scientific network pharmacology-based study holistically elucidated the basic pharmacological effects and the underlying mechanisms of YZG in the treatment of ODUB.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Jialin Li ◽  
Hua Luo ◽  
Xinkui Liu ◽  
Jingyuan Zhang ◽  
Wei Zhou ◽  
...  

Abstract Background Yuzhi Zhixue Granule (YZG) is a traditional Chinese patent medicine for treating excessive menstrual flow caused by ovulatory dysfunctional uterine bleeding (ODUB) accompanied by heat syndrome. However, the underlying molecular mechanisms, potential targets, and active ingredients of this prescription are still unknown. Therefore, it is imperative to explore the molecular mechanism of YZG. Methods The active compounds in YZG were screened by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The putative targets of YZG were collected via TCMSP and Search Tool for Interacting Chemicals (STITCH) databases. The Therapeutic Target Database (TTD) and Pharmacogenomics Knowledgebase (PharmGKB) databases were used to identify the therapeutic targets of ODUB. A protein–protein interaction (PPI) network containing both the putative targets of YZG and known therapeutic targets of ODUB was built. Furthermore, bioinformatics resources from the database for annotation, visualization and integrated discovery (DAVID) were utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, molecular docking was performed to verify the binding effect between the YZG screened compounds and potential therapeutic target molecules. Results The study employed a network pharmacology method, mainly containing target prediction, network construction, functional enrichment analysis, and molecular docking to systematically research the mechanisms of YZG in treating ODUB. The putative targets of YZG that treat ODUB mainly involved PTGS1, PTGS2, ALOX5, CASP3, LTA4H, F7 and F10. The functional enrichment analysis suggested that the produced therapeutic effect of YZG against ODUB is mediated by synergistical regulation of several biological pathways, including apoptosis arachidonic acid (AA) metabolism, serotonergic synapse, complement and coagulation cascades and C-type lectin receptor signaling pathways. Molecular docking simulation revealed good binding affinity of the seven putative targets with the corresponding compounds. Conclusion This novel and scientific network pharmacology-based study holistically elucidated the basic pharmacological effects and the underlying mechanisms of YZG in the treatment of ODUB.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Riyu Chen ◽  
Zeyi Guan ◽  
Xianxing Zhong ◽  
Wenzheng Zhang ◽  
Ya Zhang

Objective. To explore the active compounds and targets of cinobufotalin (huachansu) compared with the osteosarcoma genes to obtain the potential therapeutic targets and pharmacological mechanisms of action of cinobufotalin on osteosarcoma through network pharmacology. Methods. The composition of cinobufotalin was searched by literature retrieval, and the target was selected from the CTD and TCMSP databases. The osteosarcoma genes, found from the GeneCards, OMIM, and other databases, were compared with the cinobufotalin targets to obtain potential therapeutic targets. The protein-protein interaction (PPI) network of potential therapeutic targets, constructed through the STRING database, was inputted into Cytoscape software to calculate the hub genes, using the NetworkAnalyzer. The hub genes were inputted into the Kaplan-Meier Plotter online database for exploring the survival curve. Functional enrichment analysis was identified using the DAVID database. Results. 28 main active compounds of cinobufotalin were explored, including bufalin, adenosine, oleic acid, and cinobufagin. 128 potential therapeutic targets on osteosarcoma are confirmed among 184 therapeutic targets form cinobufotalin. The hub genes included TP53, ACTB, AKT1, MYC, CASP3, JUN, TNF, VEGFA, HSP90AA1, and STAT3. Among the hub genes, TP53, ACTB, MYC, TNF, VEGFA, and STAT3 affect the patient survival prognosis of sarcoma. Through function enrichment analysis, it is found that the main mechanisms of cinobufotalin on osteosarcoma include promoting sarcoma apoptosis, regulating the cell cycle, and inhibiting proliferation and differentiation. Conclusion. The possible mechanisms of cinobufotalin against osteosarcoma are preliminarily predicted through network pharmacology, and further experiments are needed to prove these predictions.


2020 ◽  
Author(s):  
Md. Sajedul Islam ◽  
Abul BMMK Islam

AbstractBackgroundmiRNAs are small non-coding RNAs that regulate the expression of genes by RNA silencing method. Like eukaryotic organisms, some viruses also produce miRNAs. While contribution of host miRNA in the prevention of viral pathogenesis has been studied, it is not known very well how viral miRNA can confer its survival in the host. Here we hypothesized that viral miRNAs can bind to the host target genes to confer their pathogenicity by down-regulating specific pathways and related genes that otherwise pose threat to cell survival.Methods and ResultsUsing targets of 168 viral miRNAs from 13 different viruses overrepresentation analysis was done. Functional enrichment analysis of the genes targeted by the miRNAs indicates that viruses target specific immune system and host defense related pathways via miRNA mediated gene silencing. Integration and analysis of the publicly available experimental host gene expression data by RNA-seq provided insight that viruses target host apoptosis process by switching off related genes through miRNA induced mechanisms and thus probably ensure their survival.ConclusionsAs switching off the apoptosis of host cells would provide the viruses with selective advantages in surviving inside host, our findings therefore envisage an important function of viral miRNA which demands further in vivo experiments for better understanding in this regard.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yin Qu ◽  
Zhijun Zhang ◽  
Yafeng Lu ◽  
De Zheng ◽  
Yang Wei

Background. The healing process of the surgical wound of anal fistulotomy is much slower because of the presence of stool within the wound. Cuyuxunxi (CYXX) prescription is a Chinese herbal fumigant that is being used to wash surgical wound after anal fistulotomy. This study aimed at investigating the molecular mechanism of CYXX prescription using a network pharmacology-based strategy. Materials and Methods. The active compounds in each herbal medicine were retrieved from the traditional Chinese medicine systems pharmacology (TCMSP) database and in Traditional Chinese Medicine Integrated Database (TCMID) analysis platform based on the criteria of oral bioavailability ≥40% and drug-likeness ≥0.2. The disease-related target genes were extracted from the Comparative Toxicogenomics Database. Protein-protein interaction network was built for the overlapped genes as well as functional enrichment analysis. Finally, an ingredient-target genes-pathway network was built by integrating all information. Results. A total of 375 chemical ingredients of the 5 main herbal medicines in CYXX prescription were retrieved from TCMSP database and TCMID. Among the 375 chemical ingredients, 59 were active compounds. Besides, 325 target genes for 16 active compounds in 3 herbal medicines were obtained. Functional enrichment analysis revealed that these overlapped genes were significantly related with immune response, biosynthesis of antibiotics, and complement and coagulation cascades. A comprehensive network which contains 133 nodes (8 disease nodes, 3 drug nodes, 8 ingredients, 103 target gene nodes, 7 GO nodes, and 4 pathway nodes) was built. Conclusion. The network built in this study might aid in understanding the action mechanism of CYXX prescription at molecular level to pathway level.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaoqin Ma ◽  
Meixiang Yu ◽  
Chenxia Hao ◽  
Wanhua Yang

Shuangbai Tablets (SBT), a traditional herbal mixture, has shown substantial clinical efficacy. However, a systematic mechanism of its active ingredients and pharmacological mechanisms of action against proteinuria continues being lacking. A network pharmacology approach was effectual in discovering the relationship of multiple ingredients and targets of the herbal mixture. This study aimed to identify key targets, major active ingredients, and pathways of SBT against proteinuria by network pharmacology approach combined with thin layer chromatography (TLC). Human phenotype (HP) disease analysis, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and molecular docking were used in this study. To this end, a total of 48 candidate targets of 118 active ingredients of SBT were identified. Network analysis showed PTGS2, ESR1, and NOS2 to be the three key targets, and beta-sitosterol, quercetin, and berberine were the three major active ingredients; among them one of the major active ingredients, quercetin, was discriminated by TLC. These results of the functional enrichment analysis indicated that the most relevant disease including these 48 candidate proteins is proteinuria, SBT treated proteinuria by sympathetically regulating multiple biological pathways, such as the HIF-1, RAS, AGE-RAGE, and VEGF signaling pathways. Additionally, molecular docking validation suggested that major active ingredients of SBT were capable of binding to HIF-1A and VEGFA of the main pathways. Consequently, key targets, major active ingredients, and pathways based on data analysis of SBT against proteinuria were systematically identified confirming its utility and providing a new drug against proteinuria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Siqin Zhang ◽  
Xinxing Lai ◽  
Xin Wang ◽  
Gang Liu ◽  
Zhenzhong Wang ◽  
...  

Guizhi-Fuling capsule (GZFLC), originated from a classical traditional Chinese herbal formula Guizhi-Fuling Wan, has been clinically used for primary dysmenorrhea in China. Nonetheless, the underlying pharmacological mechanisms of GZFLC remain unclear. The integration of computational and experimental methods of network pharmacology might be a promising way to decipher the mechanisms. In this study, the target profiles of 51 representative compounds of GZFLC were first predicted by a high-accuracy algorithm, drugCIPHER-CS, and the network target of GZFLC was identified. Then, potential functional modules of GZFLC on primary dysmenorrhea were investigated using functional enrichment analysis. Potential bioactive compounds were recognized by hierarchical clustering analysis of GZFLC compounds and first-line anti-dysmenorrhea drugs. Furthermore, the potential anti-dysmenorrhea mechanisms of GZFLC were verified through enzyme activity assays and immunofluorescence tests. Moreover, effects of GZFLC on primary dysmenorrhea were evaluated in oxytocin-induced dysmenorrhea murine model. In the network target analysis, GZFLC may act on five functional modules of pain, inflammation, endocrine, blood circulation and energy metabolism. Integrating computational and experimental approaches, we found that GZFLC significantly inhibited the writhing response and reduced the degree of uterine lesions in oxytocin-induced dysmenorrhea murine model. Furthermore, GZFLC may partially alleviate primary dysmenorrhea by inhibiting cyclooxygenase 2 (COX2) and downregulating MAPK signaling pathway. Consequently, GZFLC presented pain relief and sustained benefits for primary dysmenorrhea. This study could provide a scientific approach for deciphering pharmacological mechanisms of herbal formulae through network pharmacology.


Sign in / Sign up

Export Citation Format

Share Document