scholarly journals Integrated Analyses Identify Immune-Related Signature Associated with Qingyihuaji Formula for Treatment of Pancreatic Ductal Adenocarcinoma Using Network Pharmacology and Weighted Gene Co-Expression Network

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiang Qian ◽  
Zhuo Chen ◽  
Sha Sha Chen ◽  
Lu Ming Liu ◽  
Ai Qin Zhang

The study aimed to clarify the potential immune-related targets and mechanisms of Qingyihuaji Formula (QYHJ) against pancreatic cancer (PC) through network pharmacology and weighted gene co-expression network analysis (WGCNA). Active ingredients of herbs in QYHJ were identified by the TCMSP database. Then, the putative targets of active ingredients were predicted with SwissTargetPrediction and the STITCH databases. The expression profiles of GSE32676 were downloaded from the GEO database. WGCNA was used to identify the co-expression modules. Besides, the putative targets, immune-related targets, and the critical module genes were mapped with the specific disease to select the overlapped genes (OGEs). Functional enrichment analysis of putative targets and OGEs was conducted. The overall survival (OS) analysis of OGEs was investigated using the Kaplan-Meier plotter. The relative expression and methylation levels of OGEs were detected in UALCAN, human protein atlas (HPA), Oncomine, DiseaseMeth version 2.0 and, MEXPRESS database, respectively. Gene set enrichment analysis (GSEA) was conducted to elucidate the key pathways of highly-expressed OGEs further. OS analyses found that 12 up-regulated OGEs, including CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and ERBB2 that could be utilized as potential diagnostic indicators for PC. Further, methylation analyses suggested that the abnormal up-regulation of these OGEs probably resulted from hypomethylation, and GSEA revealed the genes markedly related to cell cycle and proliferation of PC. This study identified CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and ERBB2 might be used as reliable immune-related biomarkers for prognosis of PC, which may be essential immunotherapies targets of QYHJ.

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246668
Author(s):  
Lihua Cai ◽  
Honglong Wu ◽  
Ke Zhou

Identifying biomarkers that are associated with different types of cancer is an important goal in the field of bioinformatics. Different researcher groups have analyzed the expression profiles of many genes and found some certain genetic patterns that can promote the improvement of targeted therapies, but the significance of some genes is still ambiguous. More reliable and effective biomarkers identification methods are then needed to detect candidate cancer-related genes. In this paper, we proposed a novel method that combines the infinite latent feature selection (ILFS) method with the functional interaction (FIs) network to rank the biomarkers. We applied the proposed method to the expression data of five cancer types. The experiments indicated that our network-constrained ILFS (NCILFS) provides an improved prediction of the diagnosis of the samples and locates many more known oncogenes than the original ILFS and some other existing methods. We also performed functional enrichment analysis by inspecting the over-represented gene ontology (GO) biological process (BP) terms and applying the gene set enrichment analysis (GSEA) method on selected biomarkers for each feature selection method. The enrichments analysis reports show that our network-constraint ILFS can produce more biologically significant gene sets than other methods. The results suggest that network-constrained ILFS can identify cancer-related genes with a higher discriminative power and biological significance.


2021 ◽  
Author(s):  
Liang Chen ◽  
Liulin Xiong ◽  
Weinan Chen ◽  
Lizhe An ◽  
Huanrui Wang ◽  
...  

Abstract Background Bladder cancer (BLCA) is one of most common urinary tract malignant tumor and immunotherapy have generated a great deal of interest in BLCA. Immune checkpoint blockade (ICB) therapy has significantly progressed the treatment of BLCA. Multiple studies have suggested that specific genetic mutations may serve as immune biomarkers for ICB therapy. Objective In this study, we aimed to investigate the role of mutations genes and subtypes in prognosis and immune checkpoint prediction in BLCA. Method Mutation information and expression profiles were acquired from The Cancer Genome Atlas (TCGA) database. Integrated bioinformatics analysis was carried out to explore the mutation genes of BLCA. Functional enrichment analysis Gene Ontology (GO) and Gene set enrichment analysis (GSEA) was conducted. The infiltrating immune cells and the prediction of ICB between different subtypes group were explored using immuCellAI algorithm. Results The mutation genes Filaggrin (FLG) gene were identified. Following the study on its subtypes and functional enrichment analysis, Sub2 of FLG-wide type was found to have relationships with poor prognosis and immune infiltration BLCA. What’s more, Sub2 of FLG-wide type may be used as a biomarker to predict the prognosis of BLCA patients receiving ICB. Conclusion This research provides a new basis and ideas for guiding the clinical application of BLCA immunotherapy.


2020 ◽  
Author(s):  
Jian Lei ◽  
Zhen-Yu He ◽  
Jun Wang ◽  
Min Hu ◽  
Ping Zhou ◽  
...  

Abstract BackgroundTo investigate the potential molecular mechanism of ovarian cancer (OC) evolution and immunological correlation using the integrated bioinformatics analysis.MethodsData from the Gene Expression Omnibus (GEO) was used to gain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis were completed by utilizing the Database for Annotation, Visualization, and Integrated Discovery (DAVID). After multiple validation via The Cancer Genome Atlas (TCGA), Gene Expression Profiling Interactive Analysis 2 (GEPIA 2), the Human Protein Atlas (HPA) and Kaplan-Meier (KM) plotter, immune logical relationships of the key gene SOBP were evaluated based on Tumor Immune Estimation Resource (TIMER), and Gene Set Enrichment Analysis (GSEA) software. Finally, the lncRNAs-miRNAs-mRNAs sub-network was predicted by starBase, Targetscan, miRBD, and LncBase, individually. Correlation of expression and prognosis for mRNAs, miRNAs and lncRNAs were confirmed by TCGA, GEPIA 2, starBase, and KM.ResultsA total of 192 shared DEGs were discovered from the four data sets, including 125 upregulated and 67 downregulated genes. Functional enrichment analysis presented that they were mainly enriched in cartilage development, pathway in PI3K-Akt signaling pathway. Lower expression of SOBP was the independent prognostic factor for inferior prognosis in OC patients. Intriguingly, downregulated SOBP enhanced the infiltration levels of B cells, CD8+ T cells, Macrophage, Neutrophil and Dendritic cells. GSEA also disclosed low SOBP showed significantly association with the activation of various immune-related pathways. Finally, we firstly reported that MEG8-miR378d-SOBP axis was linked to development and prognosis of ovarian cancer through regulating cytokines pathway.Conclusions Our study establishes a novel MEG8-miR378d-SOBP axis in the development and prognosis of OC, and the triple sub-network probably affects the progression of ovarian tumor by regulating cytokines pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaoqin Ma ◽  
Meixiang Yu ◽  
Chenxia Hao ◽  
Wanhua Yang

Shuangbai Tablets (SBT), a traditional herbal mixture, has shown substantial clinical efficacy. However, a systematic mechanism of its active ingredients and pharmacological mechanisms of action against proteinuria continues being lacking. A network pharmacology approach was effectual in discovering the relationship of multiple ingredients and targets of the herbal mixture. This study aimed to identify key targets, major active ingredients, and pathways of SBT against proteinuria by network pharmacology approach combined with thin layer chromatography (TLC). Human phenotype (HP) disease analysis, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and molecular docking were used in this study. To this end, a total of 48 candidate targets of 118 active ingredients of SBT were identified. Network analysis showed PTGS2, ESR1, and NOS2 to be the three key targets, and beta-sitosterol, quercetin, and berberine were the three major active ingredients; among them one of the major active ingredients, quercetin, was discriminated by TLC. These results of the functional enrichment analysis indicated that the most relevant disease including these 48 candidate proteins is proteinuria, SBT treated proteinuria by sympathetically regulating multiple biological pathways, such as the HIF-1, RAS, AGE-RAGE, and VEGF signaling pathways. Additionally, molecular docking validation suggested that major active ingredients of SBT were capable of binding to HIF-1A and VEGFA of the main pathways. Consequently, key targets, major active ingredients, and pathways based on data analysis of SBT against proteinuria were systematically identified confirming its utility and providing a new drug against proteinuria.


Author(s):  
Lecai Xiong ◽  
Yuquan Bai ◽  
Minglin Zhu ◽  
Zetian Yang ◽  
Jinping Zhao ◽  
...  

Lung cancer predominates in cancer-related deaths worldwide, with lung adenocarcinoma (LUAD) being a common histological subtype of lung cancer. The aim at this study was to search for biomarkers associated with the progression and prognosis of LUAD. We have integrated the expression profiles of 1174 lung cancer patients from five GEO datasets (GSE18842, GSE19804, GSE30219, GSE40791 and GSE68465) and identified a set of differentially expressed genes. Functional enrichment analysis showed that these genes are closely related to the progression of LUAD, such as cell cycle, mitosis and adhesion. Cytoscape software was used to establish a protein-protein interaction (PPI) network to analyze important modules using Molecular Complex Detection (MCODE), and finally CCNB1, BUB1B and TTK were selected for further study. The study found that compared with non-tumor lung tissue, CCNB1, BUB1B and TTK are highly expressed in LUAD. Kaplan-Meier analysis showed that CCNB1, BUB1B and TTK were negatively correlated with the overall survival and disease-free survival of patients. Gene set enrichment analysis (GSEA) demonstrated that for the samples of any hub gene highly expressed, most of the functional gene sets enriched in cell cycle. In summary, CCNB1, BUB1B and TTK can be used as biomarkers of poor prognosis of LUAD. The high expression of CCNB1, BUB1B and TTK can accelerate the progression of LUAD and lead to shorter survival, suggesting that they may be potential targets for treatment in LUAD.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Menglin Liu ◽  
Genhao Fan ◽  
Daopei Zhang ◽  
Mingjun Zhu ◽  
Huailiang Zhang

Objective. To predict the main active ingredients, potential targets, and key pathways of Jiawei Chaiqin Wendan decoction treatment in vestibular migraine and explore possible mechanisms by network pharmacology and molecular docking technology. Methods. The active ingredients and related targets of Jiawei Chaiqin Wendan decoction were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The corresponding genes of the target were queried by UniProt database, and the “drug-compound-target-disease” network was constructed by Cytoscape 3.7.2 software. GO functional enrichment analysis and KEGG pathway enrichment analysis were carried out by R software and Bioconductor, and column chart and bubble chart were drawn by Prism software and OmicShare database for visualization. Finally, the mechanism and potential targets of Jiawei Chaiqin Wendan decoction in the treatment of vestibular migraine were predicted. Results. The “drug-compound-target-disease” network contains 154 active ingredients and 85 intersection targets. The key targets include AKT1, IL6, MAPK3, VEGFA, EGFR, CASP3, EGF, MAPK1, PTGS2, and ESR1. A total of 1939 items were obtained by GO functional enrichment analysis ( P  < 0.05). KEGG pathway enrichment analysis screened 156 signal pathways ( P  < 0.05), involving PI3K-Akt signal pathway, AGE-RAGE signal pathway in diabetes complications, MAPK signal pathway, HIF-1 signal pathway, IL-17 signal pathway, etc. Molecular docking results showed that quercetin, luteolin, kaempferol, tanshinone IIa, wogonin, naringenin, nobiletin, dihydrotanshinlactone, beta-sitosterol, and salviolone have good affinity with core target proteins IL6, PTGS2, MAPK1, MAPK3, and CGRP1. Conclusion. The active ingredients in Jiawei Chaiqin Wendan decoction may regulate the levels of inflammatory factors and neurotransmitters by acting on multiple targets such as IL6, MAPK3, MAPK1, and PTGS2, so as to play a therapeutic role in vestibular migraine.


Author(s):  
Junfeng Zhu ◽  
Xiaojiao Yi ◽  
Haiying Ding ◽  
Like Zhong ◽  
Luo Fang

Background: Doxorubicin-induced cardiotoxicity (DIC) has greatly limited the clinical benefits of this frontline drug in oncotherapy. Drug combination with natural compounds (NCs) that possess potency against DIC is considered as a promising intervention strategy. However, the mechanisms of action (MoAs) underlying such drug interactions remain poorly understood. The aim of this study was to systematically pursuit of the molecular mechanisms of NCs against DIC. Methods: First, the gene expression signatures of DIC were characterized from transcriptomics datasets with doxorubicin-treated and untreated cardiomyocytes using differentially expressed gene identification, functional enrichment analysis, and protein-protein interaction network analysis. Secondly, reverse pharmacophore mapping-based network pharmacology was employed to illustrate the MoAs of 82 publicly reported NCs with anti-DIC potency. Cluster analysis based on their enriched pathways was performed to gain systematic insights into the anti-DIC mechanisms of the NCs. Finally, the typical compounds were validated using gene set enrichment analysis (GSEA) of the relevant gene expression profiles from a public gene expression database. Results: Based on their anti-DIC MoAs, the 82 NCs could be divided into four groups, which corresponded to ten MoA clusters. GSEA and literature evidence on these compounds were provided to validate the MoAs identified through this bioinformatics analysis. The results suggested that NCs exerted potency against DIC through both common and different MoAs. Conclusion: This strategy integrating different types of bioinformatics approaches is expected to create new insights for elucidating the MoAs of NCs against DIC.


Author(s):  
Pihua Han ◽  
Haiming Yang ◽  
Xiang Li ◽  
Jie Wu ◽  
Peili Wang ◽  
...  

To identify a novel cancer stemness-related ceRNA regulatory axis in lung adenocarcinoma (LUAD) via weighted gene coexpression network analysis of a stemness index. The RNA sequencing expression profiles of 513 cancer samples and 60 normal samples were obtained from the TCGA database. Differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs) and miRNAs (DEmiRNAs) were identified with R software. Functional enrichment analysis was conducted using DAVID 6.8. The ceRNA network was constructed via multiple bioinformatics analyses, and the correlations between possible ceRNAs and prognosis were analyzed using Kaplan-Meier plots. Then, WGCNA was applied to distinguish key genes related to the mRNA expression-based stemness index (mRNAsi) in LUAD. After combining the weighted gene coexpression and ceRNA networks, a novel ceRNA regulatory axis was identified, and its biological functions were explored in vitro and vivo. In total, 1,825 DElncRNAs, 291 DEmiRNAs, and 3,742 DEmRNAs were identified. Functional enrichment analysis revealed that the DEmRNAs might be associated with LUAD onset and progression. The ceRNA network was constructed with 14 lncRNAs, 10 miRNAs and 52 mRNAs. Kaplan-Meier analysis identified 2 DEmiRNAs, 5 DElncRNAs and 41 DEmRNAs with remarkable prognostic power. One gene (MFAP4) in the ceRNA network was found to be closely related to mRNAsi by using WGCNA. Functional investigation further confirmed that the C8orf34-as1/miR-671-5p/MFAP4 regulatory axis has important functions in LUAD cell migration and stemness. This study provides a deeper understanding of the lncRNA-miRNA-mRNA ceRNA network and, more importantly, reveals a novel ceRNA regulatory axis, which may provide new insights into novel molecular therapeutic targets for inhibiting LUAD stem characteristics.


Author(s):  
Shaodong Chen ◽  

Objective: To perform molecular docking of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 3CL hydrolytic enzyme (3CLpro) and Angiotensin-Converting Enzyme II (ACE2) receptors, and to seek potential natural anti-COVID-19 drugs using computer virtual screening technology. Methods: In this study, the Autodock Vina software was first used to achieve the molecular docking of the targets, namely, sars-cov-2 3CL hydrolase and ACE2. Then, the herbals acting on 3CLpro and ACE2 receptors were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the active ingredients were also selected. After that, the chemical-target network was constructed based on the network pharmacology, and the functional enrichment analysis of Gene Ontology (GO) and the pathway enrichment analysis of Kyoto Gene and Genome Encyclopedia (KEGG) were carried out by DAVID to speculate about the mechanism of action of the core drug. Results: A total of six potential anti-COVID-19 active ingredients were selected from natural herbs. They were evaluated by the “ADME” and "Lipinski” rules and their content in the natural herbs were determined by the literature mining method. Finally, Bicuculline was selected as the anti-covid-19 candidate drug. Conclusion: Bicuculline has a stronger ability to combine with 3CLpro and ACE2 than chemical drugs recommended in the clinical practice. Internet pharmacological analysis confirms that Bicuculline can effectively resist COVID-19 pneumonia through multiple pathways.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuntao Shi ◽  
Yingying Zhuang ◽  
Jialing Zhang ◽  
Mengxue Chen ◽  
Shangnong Wu

Objective. Although noncoding RNAs, especially the microRNAs, have been found to play key roles in CRC development in intestinal tissue, the specific mechanism of these microRNAs has not been fully understood. Methods. GEO and TCGA database were used to explore the microRNA expression profiles of normal mucosa, adenoma, and carcinoma. And the differential expression genes were selected. Computationally, we built the SVM model and multivariable Cox regression model to evaluate the performance of tumorigenic microRNAs in discriminating the adenomas from normal tissues and risk prediction. Results. In this study, we identified 20 miRNA biomarkers dysregulated in the colon adenomas. The functional enrichment analysis showed that MAPK activity and MAPK cascade were highly enriched by these tumorigenic microRNAs. We also investigated the target genes of the tumorigenic microRNAs. Eleven genes, including PIGF, TPI1, KLF4, RARS, PCBP2, EIF5A, HK2, RAVER2, HMGN1, MAPK6, and NDUFA2, were identified to be frequently targeted by the tumorigenic microRNAs. The high AUC value and distinct overall survival rates between the two risk groups suggested that these tumorigenic microRNAs had the potential of diagnostic and prognostic value in CRC. Conclusions. The present study revealed possible mechanisms and pathways that may contribute to tumorigenesis of CRC, which could not only be used as CRC early detection biomarkers, but also be useful for tumorigenesis mechanism studies.


Sign in / Sign up

Export Citation Format

Share Document