scholarly journals Trajectory Prediction of Three Dimensional Forming Tube Based On Kalman Filter

Author(s):  
Jianjun Wu ◽  
Liang Bo ◽  
Junzhou Yang

Abstract This article focuses on the prediction of forming trajectory and process optimization during the forming process for the variable curvature tubes. Firstly, through cubic B-spline interpolation, the geometric characteristics of the axis of the target tube are obtained. An overall tube is "separated and then integrated", and the relationship between geometric parameters and processing parameters is established to obtain the initial process parameters. Based on the Extended Kalman Filter (EKF) algorithm, the motion model and observation model of tube forming using simulation are presented section by section, and the relevant calculation and analysis are carried out. The forming trajectory has been predicted and the processing parameters are optimized during the processing process, in which the effectiveness of the processing optimum scheme is illustrated.

2010 ◽  
Vol 113-116 ◽  
pp. 1619-1623
Author(s):  
Peng Li ◽  
Yu Bo Tao ◽  
Feng Hu Wang ◽  
Sun Guo Wang

For further researching the structural characteristics of Orientated strand board (OSB) mat, a three-dimensional model was developed using computer-aided design (CAD) technology to simulate behaviors of individual strands in the mat-forming process. This model provided a more realistic description of the mat structure than the previous simulations in using varied strand geometry and different types of strand orientation, defining strand location, and solving the problem of edge effect. This model can be used to analyze the impact of strand orientation on the number of strand overlaps, and to identify the relationship of strand orientation and the horizontal voids distribution in the mat. Information provided by this model is the basis of further studying the effect of the mat formation on panel void characteristics, and the relationship of the voids volume to panel properties.


2004 ◽  
Vol 471-472 ◽  
pp. 453-456 ◽  
Author(s):  
Yong Kang Zhang ◽  
Jian Zhong Zhou ◽  
Dun Wen Zuo ◽  
Judith C. Yang ◽  
Lan Cai

The conventional forming of sheet metal is realized by the Die and Mould, this method usually give rise to high cost, long production periods and little flexibility. In order to adapt to the changing requirements of the market and make small batch production of three-dimensional parts of shallow stretching economically, a flexible forming technique of sheet metal based on laser shock waves is presented in this paper. After the forming mechanism and process are introduced, a finite-element analysis method is applied to simulate the shock forming process to obtain the optimized laser parameters and the shocking tracks. The experimental are carried out for the overlapped shock-forming, and the forming contour is measured and compared with the FEA simulation. The investigation provides the theoretical foundation for the selection of forming locus and processing parameters of flexible forming of sheet metal.


2007 ◽  
Vol 546-549 ◽  
pp. 735-740
Author(s):  
Peng Yue Wu ◽  
Yu Cai Wu ◽  
Shui Sheng Xie ◽  
Guo Jie Huang ◽  
Lei Cheng

In the investigation, the continuous extrusion forming (CONFORM) process of aluminum alloy rectangular hollow conductor has been studied by three-dimensional finite-element method based on Software DEFORM-3D. The rigid-viscoplastic constitutive equation was employed in the model. Distributions of velocity field, strain field, stress field and temperature field were obtained in the forming process. The results will give effective guidelines to optimize the processing parameters and to select, the die structure and die materials.


2021 ◽  
Vol 1135 (1) ◽  
pp. 012006
Author(s):  
Georgi Nikolaev Nikolov ◽  
Anders Noel Thomsen ◽  
Morten Kristiansen

Abstract Laser forming is a contactless thermal forming process that can be applied for both single and double-curved geometries. When it comes to prototyping and small batch production, laser forming has the potential to compete with conventional sheet-metal forming processes; however, an investigation of the relationship between process parameters, hardness distribution and the bend rate is lacking. This study examines the influence of using different sets of processing parameters on the bend rate and the hardness distribution. ANSI 304 stainless steel samples of 1 and 3 mm thickness are laser formed up to 90° with a bend radius equal to their thickness. A theoretical discussion of the material’s hardening kinetics is used to generalize the results. Micro-Vickers hardness test is used to measure the hardness distribution along the 3 mm samples to support the theoretical discussion. The results show that the bend rate increases when using different sets of process parameters; furthermore, the bend arc length has shown to have a significant influence over the bend rate. An increase of hardness is observed on the bottom side of the laser formed samples, indicating potential strain hardening.


2001 ◽  
Vol 35 (10) ◽  
pp. 826-848 ◽  
Author(s):  
Patricia Prasatya ◽  
Gregory B. McKenna ◽  
Sindee L. Simon

The isotropic residual stresses in a composite subjected to three-dimensional constraints are calculated by extending a thermo-viscoelastic model developed previously by Simon et al. [1] to describe the time, temperature, and conversion dependence of the shear modulus for a commercial thermosetting material during cure. Experimental residual stress data as a function of cure time are fit to obtain limiting values for the rubbery and glassy bulk moduli. The effects of cure history on isotropic residual stresses are then investigated via simulations using the bulk moduli, a model of the cure kinetics, the relationship beween T g and conversion, and the stress relaxation function obtained in the thermo-viscoelastic model which includes the dependence of the shift factor on temperature and conversion. The isotropic residual stresses at room temperature can be directly related to the cure temperature at which gelation occurred for cases when vitrification does not occur during cure.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Hamid Ait Said ◽  
Hassan Noukrati ◽  
Hicham Ben Youcef ◽  
Ayoub Bayoussef ◽  
Hassane Oudadesse ◽  
...  

Three-dimensional hydroxyapatite-chitosan (HA-CS) composites were formulated via solid-liquid technic and freeze-drying. The prepared composites had an apatitic nature, which was demonstrated by X-ray diffraction and Infrared spectroscopy analyses. The impact of the solid/liquid (S/L) ratio and the content and the molecular weight of the polymer on the composite mechanical strength was investigated. An increase in the S/L ratio from 0.5 to 1 resulted in an increase in the compressive strength for HA-CSL (CS low molecular weight: CSL) from 0.08 ± 0.02 to 1.95 ± 0.39 MPa and from 0.3 ± 0.06 to 2.40 ± 0.51 MPa for the HA-CSM (CS medium molecular weight: CSM). Moreover, the increase in the amount (1 to 5 wt%) and the molecular weight of the polymer increased the mechanical strength of the composite. The highest compressive strength value (up to 2.40 ± 0.51 MPa) was obtained for HA-CSM (5 wt% of CS) formulated at an S/L of 1. The dissolution tests of the HA-CS composites confirmed their cohesion and mechanical stability in an aqueous solution. Both polymer and apatite are assumed to work together, giving the synergism needed to make effective cylindrical composites, and could serve as a promising candidate for bone repair in the orthopedic field.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


2013 ◽  
Vol 788 ◽  
pp. 57-60
Author(s):  
Chun Cao ◽  
Chun Dong Zhu ◽  
Chen Fu

Warm pressing forming technology has been gradually applied to the forming of automotive friction materials. How to ensure product performance to achieve the target at the same time achieve the maximum energy saving is the research focus of this study. In this paper, by using finite element method, the field of automotive friction materials in warm pressing forming was analyzed, reveals the relationship between the temperature field and the heating temperature/heating time. Furthermore, the energy consumption was analyzed and compared it with hot pressing forming process. The results will have significant guiding to the process optimization in warm pressing forming.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 873
Author(s):  
Dandan Xia ◽  
Liming Dai ◽  
Li Lin ◽  
Huaifeng Wang ◽  
Haitao Hu

The field measurement was conducted to observe the wind field data of West Pacific typhoon “Maria” in this research. With the application of ultrasonic anemometers installed in different heights (10 m, 80 m, 100 m) of the tower, the three dimensional wind speed data of typhoon “Maria” was acquired. In addition, vane-type anemometers were installed to validate the accuracy of the wind data from ultrasonic anemometers. Wind characteristics such as the mean wind profile, turbulence intensity, integral length scale, and wind spectrum are studied in detail using the collected wind data. The relationship between the gust factor and turbulence intensity was also studied and compared with the existing literature to demonstrate the characteristics of Maria. The statistical characteristics of the turbulence intensity and gust factor are presented. The corresponding conclusion remarks are expected to provide a useful reference for designing wind-resistant buildings and structures.


Sign in / Sign up

Export Citation Format

Share Document