Label-free Quantitative Proteomics Combined With Transcriptomics Revealed the Importance of Cardiac Development in Producing the High Metabolic Capacity of Yellowfin Tuna (Thunnus Albacares)

Author(s):  
Lulu Yan ◽  
Jieyun Guo ◽  
Chao Zhao ◽  
Yong Liu ◽  
Pengfei Wang ◽  
...  

Abstract Tuna are commercially important fish throughout the world, and they are renowned for their endothermy, which allows them to maintain elevated temperatures in the oxidative locomotor muscles, viscera, brain, and eyes while occupying cold, productive, high-latitude waters. The endothermic mechanism is supported by a high heart rate and cardiac output, but the genes and proteins that participate in this cardiac function are poorly known. In this study, we combined label-free quantitative proteomics and transcriptomics to investigate the changes in the heart of yellowfin tuna (Thunnus albacares) before and after they developed endothermy. We identified 515,428 transcripts and 3355 protein groups in the hearts of two development stages of yellowfin tuna. Twenty-eight differentially expressed proteins were correlated with differentially expressed genes. The proteins that accelerate energy production were more highly expressed in the hearts of the large yellowfin tuna compared with the small specimens. Moreover, the proteins in the Z-disk, which protect against mechanical damage, were only detected in the hearts of large fish. These results indicate that as yellowfin tuna grow, the heart develops a self-protection strategy to cope with high metabolic rates and high mechanical forces. The differentially expressed proteins related to cardiac function, which are closely associated with striated muscle differentiation, glycosylation, and cardiac myocytes motility, were highly expressed in the larger (endothermic) tuna than that in the smaller (poikilothermic) tuna. Therefore, we suggest that the heart function of yellowfin tuna changes and improves during the transition from poikilothermic tuna (small size, 126 mm < fork length (FL) < 152 mm, 30 g < body weight < 46 g) to endothermic tuna (large size, 207 mm < FL < 235 mm, 170 g < body weight < 200 g). This is the first report of how gene and protein expression levels explain the strong heart function of yellowfin tuna.

2020 ◽  
Author(s):  
Peixi Liu ◽  
Yuan Shi ◽  
Sichen Li ◽  
Yingjun Liu ◽  
Yingjie Zhou ◽  
...  

Abstract Background: Spinal dural arteriovenous fistula (SDAVF) is the most common spinal vascular shunt lesion. Although pathological changes in the SDAVF draining vein (SDAVF-DV) have been elucidated, protein changes remain enigmatic. We investigated protein changes in the SDAVF-DV.Methods: Three SDAVF-DV samples were collected, and superficial temporal artery (STA) and superficial temporal vein (STV) samples were used as controls. After quantification and enzymolysis of the proteins, label-free quantitative proteomics was performed, and the peptide mixture was fractionated and analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify the differentially expressed proteins. Bioinformatics analysis of the differentially expressed proteins was also performed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analyses.Results: Compared with the STA, the SDAVF-DV had 195 upregulated proteins and 303 downregulated proteins. GO analysis showed that the most differential GO terms in each category were the adenylate cyclase-modulating G protein-coupled receptor signalling pathway, U6 snRNP and SH3 domain binding. KEGG pathway analysis showed that the most differentially expressed protein pathway was focal adhesion. Compared with the STV, the SDAVF-DV had 158 upregulated proteins and 362 downregulated proteins. GO analysis showed that the most differential GO terms in each category were lamellipodium assembly, U6 snRNP, and SH3 domain binding. KEGG pathway analysis showed that the most differentially expressed protein pathway was dilated cardiomyopathy. The PPI analysis revealed PPIs among the top 300 proteins.Conclusions: We demonstrated that the SDAVF-DV showed specific protein expression changes under long-period venous hypertension. The results of the present study will provide insights into the pathogenesis of SDAVF formation at the protein level. The proteomic results provide a scientific foundation for further study to explore the pathophysiological mechanism of SDAVF.


2020 ◽  
Author(s):  
Huiyi Song ◽  
Ni Lou ◽  
Jianjun Liu ◽  
Hong Xiang ◽  
Dong Shang

Abstract Background: Escherich coli (E.coli) is the principal pathogen that causes biofilm formation; the latter is associated with infectious diseases and antibiotic resistance. In our previous work, we demonstrated that probiotic microcapsules have superior biofilm inhibition capacity compared to probiotic sterile culture supernatant. Herein, the mechanism of the inhibition effects was investigated using label-free quantitative proteomics analysis. Results: The proteomic analysis characterized a total of 1655 proteins in E.coli K12MG1655 and 1431 proteins in Lactobacillus rhamnosus GG (LGG). Among them, after coculture treatment, there were 262 and differentially expressed proteins that were specific for E.coli and 291 for LGG. The differentially expressed proteins after coculture were related to cellular metabolism, the stress response, transcription, and the cell membrane. In addition, we identified five strain-specific genes in E.coli and LGG, respectively, which were consistent with the proteomics results. Conclusions: These findings indicate that LGG microcapsules may inhibit E.coli biofilm inhibition by disrupting metabolic processes, particularly in relation to energy metabolism and stimulus responses, both of which are critical for the growth of LGG. Together, these findings increase our understanding of the interactions between bacteria under coculture conditions.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huiyi Song ◽  
Ni Lou ◽  
Jianjun Liu ◽  
Hong Xiang ◽  
Dong Shang

Abstract Background Escherichia coli (E. coli) is the principal pathogen that causes biofilm formation. Biofilms are associated with infectious diseases and antibiotic resistance. This study employed proteomic analysis to identify differentially expressed proteins after coculture of E. coli with Lactobacillus rhamnosus GG (LGG) microcapsules. Methods To explore the relevant protein abundance changes after E. coli and LGG coculture, label-free quantitative proteomic analysis and qRT-PCR were applied to E. coli and LGG microcapsule groups before and after coculture, respectively. Results The proteomic analysis characterised a total of 1655 proteins in E. coli K12MG1655 and 1431 proteins in the LGG. After coculture treatment, there were 262 differentially expressed proteins in E. coli and 291 in LGG. Gene ontology analysis showed that the differentially expressed proteins were mainly related to cellular metabolism, the stress response, transcription and the cell membrane. A protein interaction network and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis indicated that the differentiated proteins were mainly involved in the protein ubiquitination pathway and mitochondrial dysfunction. Conclusions These findings indicated that LGG microcapsules may inhibit E. coli biofilm formation by disrupting metabolic processes, particularly in relation to energy metabolism and stimulus responses, both of which are critical for the growth of LGG. Together, these findings increase our understanding of the interactions between bacteria under coculture conditions.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 607
Author(s):  
Nadeem Ullah ◽  
Ling Hao ◽  
Jo-Lewis Banga Ndzouboukou ◽  
Shiyun Chen ◽  
Yaqi Wu ◽  
...  

Rifampicin (RIF) is one of the most important first-line anti-tuberculosis (TB) drugs, and more than 90% of RIF-resistant (RR) Mycobacterium tuberculosis clinical isolates belong to multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. In order to identify specific candidate target proteins as diagnostic markers or drug targets, differential protein expression between drug-sensitive (DS) and drug-resistant (DR) strains remains to be investigated. In the present study, a label-free, quantitative proteomics technique was performed to compare the proteome of DS, RR, MDR, and XDR clinical strains. We found iniC, Rv2141c, folB, and Rv2561 were up-regulated in both RR and MDR strains, while fadE9, espB, espL, esxK, and Rv3175 were down-regulated in the three DR strains when compared to the DS strain. In addition, lprF, mce2R, mce2B, and Rv2627c were specifically expressed in the three DR strains, and 41 proteins were not detected in the DS strain. Functional category showed that these differentially expressed proteins were mainly involved in the cell wall and cell processes. When compared to the RR strain, Rv2272, smtB, lpqB, icd1, and folK were up-regulated, while esxK, PPE19, Rv1534, rpmI, ureA, tpx, mpt64, frr, Rv3678c, esxB, esxA, and espL were down-regulated in both MDR and XDR strains. Additionally, nrp, PPE3, mntH, Rv1188, Rv1473, nadB, PPE36, and sseA were specifically expressed in both MDR and XDR strains, whereas 292 proteins were not identified when compared to the RR strain. When compared between MDR and XDR strains, 52 proteins were up-regulated, while 45 proteins were down-regulated in the XDR strain. 316 proteins were especially expressed in the XDR strain, while 92 proteins were especially detected in the MDR strain. Protein interaction networks further revealed the mechanism of their involvement in virulence and drug resistance. Therefore, these differentially expressed proteins are of great significance for exploring effective control strategies of DR-TB.


2020 ◽  
Author(s):  
Bolin Wu ◽  
Haitao Shang ◽  
Xitian Liang ◽  
Huajing Yang Huajing Yang ◽  
Hui Jing ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) poses a severe threat to human health. The NET-1 protein has been proved to be strongly associated with HCC proliferation and metastasis in our previous study. Methods: Here, we developed a label-free proteome mass spectrometry workflow to analyze formalin-fixed and paraffin-embedded HCC xenograft samples collected in our previous study. Results: The result showed that 78 proteins were differentially expressed after NET-1 protein inhibited. Among them, the expression of 61 proteins up-regulated and the expression of 17 proteins were significantly down-regulated. Of the differentially expressed proteins, the vast majority of Gene Ontology enrichment terms belong to the biological process. The KEGG pathway enrichment analysis showed that the 78 differentially expressed proteins significantly enriched in 45 pathways. We concluded that the function of the NET-1 gene is not only to regulate HCC but also to participate in a variety of biochemical metabolic pathways in the human body. Furthermore, the protein-protein interaction analysis indicated that the interactions of differentially expressed proteins are incredibly sophisticated. All the protein-protein interactions happened after the NET-1 gene has been silenced. Conclusions: Finally, our study also provides a useful proposal for targeted therapy based on tetraspanin proteins to treat HCC, and further mechanism investigations are needed to reveal a more detailed mechanism of action for NET-1 protein regulation of HCC.


Dose-Response ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 155932581988950 ◽  
Author(s):  
Lingong Jiang ◽  
Huimin Jia ◽  
Zhicheng Tang ◽  
Xiaofei Zhu ◽  
Yangsen Cao ◽  
...  

Radiation-induced liver damage (RILD) has become a limitation in radiotherapy for hepatocellular carcinoma. We established a rabbit model of RILD by CyberKnife. Electron microscopy analysis revealed obvious nuclear atrophy and disposition of fat in the nucleus after irradiation. We then utilized a mass spectrometry-based label-free relative quantitative proteomics approach to compare global proteomic changes of rabbit liver in response to radiation. In total, 2365 proteins were identified, including 338 proteins that were significantly dysregulated between irradiated and nonirradiated liver tissues. These differentially expressed proteins included USP47, POLR2A, CSTB, MCFD2, and CSNK2A1. Real-time polymerase chain reaction confirmed that USP47 and CABLES1 transcripts were significantly higher in irradiated liver tissues, whereas MCFD2 and CSNK2A1 expressions were significantly reduced. In Clusters of Orthologous Groups of proteins analysis, differentially expressed proteins were annotated and divided into 24 categories, including posttranslational modification, protein turnover, and chaperones. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the enriched pathways in dysregulated proteins included the vascular endothelial growth factors (VEGF) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, and the adipocytokine signaling pathway. The identification of proteins and pathways is crucial toward elucidating the radiation response process of the liver, which may facilitate the discovery of novel therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document