scholarly journals Ultrasound-triggered on Demand Lidocaine Release Relieves Postoperative Pain

Author(s):  
Xiaohong Chen ◽  
Jianfeng Zhang ◽  
Yan Yu ◽  
Haoran Wang ◽  
Genshan Ma ◽  
...  

Abstract BackgroundSafe and noninvasive on-demand relief is a crucial and effective treatment for postoperative pain because it considers variable timing and intensity of anesthetics. Ultrasound modulation is a promising technique for this treatment because it allows convenient timed and noninvasive controlled drug release.MethodsWe created an ultrasound-triggered lidocaine (Lido) release platform using an amino acid hydrogel functioning as three dimensional (3D) scaffold material (Lido-PPIX@ER hydrogel). Optimal preparation conditions and ultrasound-triggered parameters were evaluated. In the postoperative pain SD rat model, the Lido-PPIX@ER hydrogel or free lidocaine was administered by subcutaneous injection immediately after making the paw incision. Mechanical hypersensitivity was assessed using calibrated von Frey filaments after an individualized (highly variable) ultrasound-triggered process. The safety of the treatment was also evaluated.ResultsThe Lido-PPIX@ER hydrogel allows control of the timing, intensity and duration of lidocaine (Lido) to relieve postoperative pain. The hydrogel releases Lido due to the elevated reactive oxygen species (ROS) levels generated by PPIX under ultrasound triggering. The optimal ultrasound parameter (0.3 W/cm2, 30 s) was chosen for in vitro and in vivo studies. The Lido-PPIX@ER hydrogel (with lidocaine, 5.6 mg/mL) under individualized ultrasound triggering (every 2 h in the first 12 h, every 4 h for the next 36 h, and then every 6 h until 72 h postsurgery) released lidocaine and provided effective analgesia for more than 72 h. Additionally, the withdrawal threshold was higher than that in the control group at all time points measured. The hydrogel showed repeatable and adjustable ultrasound-triggered nerve blocks in vivo, the duration of which depended on the extent and intensity of insonation. On histopathology, no systemic effect or tissue reaction was observed in the ultrasound-triggered Lido-PPIX@ER hydrogel-treated group.ConclusionsThe Lido-PPIX@ER hydrogel with individualized (highly variable) ultrasound triggering is a convenient and effective method that offers timed and spatiotemporally controlled Lido release to manage postoperative pain.

2021 ◽  
Author(s):  
Nameeta Shah ◽  
Pavan M. Hallur ◽  
Raksha A. Ganesh ◽  
Pranali Sonpatki ◽  
Divya Naik ◽  
...  

AbstractGlioblastoma is the most lethal primary malignant brain tumor in adults. Simplified two-dimensional (2D) cell culture and neurospheres in vitro models fail to recapitulate the complexity of the tumor microenvironment, limiting its ability to predict therapeutic response. Three-dimensional (3D) scaffold-based models have emerged as a promising alternative for addressing these concerns. One such 3D system is gelatin methacrylate (GelMA) hydrogels, which can be used for modeling the glioblastoma microenvironment. We characterized the phenotype of patient-derived glioma cells cultured in GelMA hydrogels (3D-GMH) for their tumorigenic properties using invasion and chemoresponse assays. In addition, we used integrated single-cell and spatial transcriptome analysis to compare cells cultured in 3D-GMH to cells in vivo. Finally, we assessed tumor-immune cell interactions with a macrophage infiltration assay and a cytokine array. We show that cells cultured in 3D-GMH develop a mesenchymal-like cellular phenotype found in perivascular and hypoxic regions present in the core of the tumor, and recruit macrophages by secreting cytokines in contrast to the cells grown as neurospheres that match the phenotype of cells of the infiltrative edge of the tumor.


Author(s):  
Jietao Lin ◽  
Antonia RuJia Sun ◽  
Jian Li ◽  
Tianying Yuan ◽  
Wenxiang Cheng ◽  
...  

Three-dimensional (3D) co-culture models have closer physiological cell composition and behavior than traditional 2D culture. They exhibit pharmacological effects like in vivo responses, and therefore serve as a high-throughput drug screening model to evaluate drug efficacy and safety in vitro. In this study, we created a 3D co-culture environment to mimic pathological characteristics of rheumatoid arthritis (RA) pannus tissue. 3D scaffold was constructed by bioprinting technology with synovial fibroblasts (MH7A), vascular endothelial cells (EA.hy 926) and gelatin/alginate hydrogels. Cell viability was observed during 7-day culture and the proliferation rate of co-culture cells showed a stable increase stage. Cell-cell interactions were evaluated in the 3D printed scaffold and we found that spheroid size increased with time. TNF-α stimulated MH7A and EA.hy 926 in 3D pannus model showed higher vascular endothelial growth factor (VEGF) and angiopoietin (ANG) protein expression over time. For drug validation, methotrexate (MTX) was used to examine inhibition effects of angiogenesis in 3D pannus co-culture model. In conclusion, this 3D co-culture pannus model with biological characteristics may help the development of anti-RA drug research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nameeta Shah ◽  
Pavan M. Hallur ◽  
Raksha A. Ganesh ◽  
Pranali Sonpatki ◽  
Divya Naik ◽  
...  

AbstractGlioblastoma is the most lethal primary malignant brain tumor in adults. Simplified two-dimensional (2D) cell culture and neurospheres in vitro models fail to recapitulate the complexity of the tumor microenvironment, limiting its ability to predict therapeutic response. Three-dimensional (3D) scaffold-based models have emerged as a promising alternative for addressing these concerns. One such 3D system is gelatin methacrylate (GelMA) hydrogels, and we aimed to understand the suitability of using this system to mimic treatment-resistant glioblastoma cells that reside in specific niches. We characterized the phenotype of patient-derived glioma cells cultured in GelMA hydrogels (3D-GMH) for their tumorigenic properties using invasion and chemoresponse assays. In addition, we used integrated single-cell and spatial transcriptome analysis to compare cells cultured in 3D-GMH to neoplastic cells in vivo. Finally, we assessed tumor-immune cell interactions with a macrophage infiltration assay and a cytokine array. We show that the 3D-GMH system enriches treatment-resistant mesenchymal cells that are not represented in neurosphere cultures. Cells cultured in 3D-GMH resemble a mesenchymal-like cellular phenotype found in perivascular and hypoxic regions and recruit macrophages by secreting cytokines, a hallmark of the mesenchymal phenotype. Our 3D-GMH model effectively mimics the phenotype of glioma cells that are found in the perivascular and hypoxic niches of the glioblastoma core in situ, in contrast to the neurosphere cultures that enrich cells of the infiltrative edge of the tumor. This contrast highlights the need for due diligence in selecting an appropriate model when designing a study‘s objectives.


2018 ◽  
Vol 4 (1) ◽  
pp. 423-427
Author(s):  
Robert Ott ◽  
Carolin Wüstenhagen ◽  
Michael Stiehm ◽  
Klaus-Peter Schmitz ◽  
Stefan Siewert ◽  
...  

AbstractIn tissue engineering and regenerative medicine mesenchymal stem cells (MSC) are widely used to replace and restore the function of dysfunctional or missing tissue. Recent studies have shown significant enhancements of the in vivo healing process following dentofacial bone augmentation procedures employing stem cell-loaded xenografts. We conducted experimental and numerical investigations in perfusion flow bioreactor-xenograft-systems to identify flow conditions as well as bioreactor design features that allow for homogeneous MSC-distribution in Geistlich Bio- Oss Block xenografts. Pressure gradient - velocity characteristics and flow distributions were investigated experimentally and numerically for two bioreactor designs at steady-state flow conditions with Reynolds numbers (Re) ranging from 0.01 ≤ Re ≤ 0.32. Distilled water at 20°C with a dynamic viscosity of 1.002 mPa∙s and a density of 998 kg/m3 was used. The geometry of the xenograft utilized in three-dimensional computational fluid dynamics (CFD) simulation was obtained by means of micro-computed tomography (μCT) at an isotropic spatial resolution of 9.5 μm. The permeability values calculated from the experimental data are in good accordance with the numerical results. The investigations showed that the increase of the inflow- and outflow-area diameter, as well as the decrease of the volumetric flow rate, result in a decreasing heterogeneity of the flow distribution within the xenograft. The calculated wall shear stress rates in the three-dimensional (3D) scaffold range from 1∙10-12Pa ≤ τ ≤ 0.2 Pa. Experimentally validated CFD simulations introduced in this study provide an applicable tool to assess optimal flow conditions for homogeneous MSC distribution in bioreactor-xenograft-systems.


2019 ◽  
Vol 20 (18) ◽  
pp. 4527 ◽  
Author(s):  
Hao-Hsi Kao ◽  
Chang-Yi Kuo ◽  
Kuo-Su Chen ◽  
Jyh-Ping Chen

Mesothelial cells are specific epithelial cells that are lined in the serosal cavity and internal organs. Nonetheless, few studies have explored the possibility to culture mesothelial cells in a three-dimensional (3D) scaffold for tissue engineering applications. Towards this end, we fabricated macroporous scaffolds from gelatin and gelatin/hyaluronic acid (HA) by cryogelation, and elucidated the influence of HA on cryogel properties and the cellular phenotype of mesothelial cells cultured within the 3D scaffolds. The incorporation of HA was found not to significantly change the pore size, porosity, water uptake kinetics, and swelling ratios of the cryogel scaffolds, but led to a faster scaffold degradation in the collagenase solution. Adding 5% HA in the composite cryogels also decreased the ultimate compressive stress (strain) and toughness of the scaffold, but enhanced the elastic modulus. From the in vitro cell culture, rat mesothelial cells showed quantitative cell viability in gelatin (G) and gelatin/HA (GH) cryogels. Nonetheless, mesothelial cells cultured in GH cryogels showed a change in the cell morphology and cytoskeleton arrangement, reduced cell proliferation rate, and downregulation of the mesothelium specific maker gene expression. The production of key mesothelium proteins E-cadherin and calretinin were also reduced in the GH cryogels. Choosing the best G cryogels for in vivo studies, the cell/cryogel construct was used for the transplantation of allograft mesothelial cells for mesothelium reconstruction in rats. A mesothelium layer similar to the native mesothelium tissue could be obtained 21 days post-implantation, based on hematoxylin and eosin (H&E) and immunohistochemical staining.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyebin Yoo ◽  
Jun Seok Park ◽  
Seung Soo Oh ◽  
Hyun Kang

AbstractTo efficiently prolong analgesic effects, we developed osmotically balanced, large unilamellar liposomes (~ 6 μm in diameter) in which highly concentrated bupivacaine (up to 30 mg/mL) was encapsulated, and their sustained bupivacaine release was highly effective in relieving postoperative pain over 24 h in a rat model. Our reverse-phase evaporation method based on non-toxic alcohol, ethanol, enabled simple and cost-effective production of bupivacaine-loaded liposomes, of which osmotic pressure was readily balanced to improve the structural stability of the enlarged unilamellar liposomes along with extension of their shelf life (> a month). The in vitro release profile verified that the release duration of the bupivacaine-loaded liposomes extended up to 6 days. For the in vivo study, male Sprague–Dawley rats were used for the incisional pain model, simulating postoperative pain, and the mechanical withdrawal threshold (MWT) was measured using a von Frey filament. Compared to the control group that received intraplantar administration of normal saline, the group of liposomal bupivacaine showed that the initially increased MWT gradually decreased up to 24 h, and importantly, the analgesic effect of the liposomal bupivacaine was maintained 6 times longer than that of bupivacaine only, proving the potential of effective long-acting anesthetics.


Author(s):  
Weiwei Lin ◽  
Wanling Lan ◽  
Yingke Wu ◽  
Daiguo Zhao ◽  
Yanchao Wang ◽  
...  

Abstract A green fabrication process (organic solvent-free) of artificial scaffolds is required in tissue engineering field. In this work, a series of aligned three-dimensional (3D) scaffolds are made from biodegradable waterborne polyurethane (PU) emulsion via directional freeze–drying method to ensure no organic byproducts. After optimizing the concentration of polymer in the emulsion and investigating different freezing temperatures, an aligned PUs scaffold (PU14) generated from 14 wt% polymer content and processed at −196°C was selected based on the desired oriented porous structure (pore size of 32.5 ± 9.3 μm, porosity of 92%) and balanced mechanical properties both in the horizontal direction (strength of 41.3 kPa, modulus of 72.3 kPa) and in the vertical direction (strength of 45.5 kPa, modulus of 139.3 kPa). The response of L929 cells and the regeneration of muscle tissue demonstrated that such pure material-based aligned 3D scaffold can facilitate the development of orientated cells and anisotropic tissue regeneration both in vitro and in vivo. Thus, these pure material-based scaffolds with ordered architecture have great potentials in tissue engineering for biological anisotropic tissue regeneration, such as muscle, nerve, spinal cord and so on.


2021 ◽  
Author(s):  
Hyebin Yoo ◽  
Jun Seok Park ◽  
Seung Soo Oh ◽  
Hyun Kang

Abstract To efficiently prolong analgesic effects, we developed osmotically balanced, large unilamellar liposomes (~6 μm in diameter) in which highly concentrated bupivacaine (up to 30 mg/mL) was encapsulated, and their sustained bupivacaine release was highly effective in relieving postoperative pain over 24 h in a rat model. Our reverse-phase evaporation method based on non-toxic alcohol, ethanol, enabled simple and cost-effective production of bupivacaine-loaded liposomes, of which osmotic pressure was readily balanced to improve the structural stability of the enlarged unilamellar liposomes along with extension of their shelf life (> a month). The in vitro release profile verified that the release duration of the bupivacaine-loaded liposomes extended up to six days. For the in vivo study, male Sprague-Dawley rats were used for the incisional pain model, simulating postoperative pain, and the mechanical withdrawal threshold (MWT) was measured using a von Frey filament. Compared to the control group that received intraplantar administration of normal saline, the group of liposomal bupivacaine showed that the initially increased MWT gradually decreased up to 24 h, and importantly, the analgesic effect of the liposomal bupivacaine was maintained 6 times longer than that of bupivacaine only, proving the potential of effective long-acting anesthetics.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Hye-Ryung Choi ◽  
Jung-Won Shin ◽  
Jung-Im Na ◽  
Kyung-Mi Nam ◽  
Hyun-Sun Lee ◽  
...  

We found that tripeptide “ACQ: alanine-cysteine-glutamine” has significant DPPH scavenging activity compared to that of glutathione. Antioxidant effects of ACQ were tested inin vitroandin vivomodels. When treated with H2O2, mock treated fibroblasts and keratinocytes showed strong staining by H2DCFA. But, ACQ showed good protective effects against hydrogen peroxide treatment. When mice were fed for 2 or 4 weeks, similar protective effects were observed. In the control group, epidermis was severely damaged by UV irradiation and apoptotic keratinocytes were observed. There were also numerous TUNEL positive cells. But in the ACQ group, epidermis became thicker and there was no sign of severe damage. Interestingly, the number of p63 cells was also higher in ACQ fed mice. To confirm the stem cell rescuing effects of ACQ, three-dimensional skin samples were constructed. Results showed that ACQ increased the expression of integrinα6 and the number of p63 positive cells. These findings showed that ACQ has good antioxidant activity and may increase stem cell activities by the regulation of integrinα6.


2015 ◽  
Vol 112 (51) ◽  
pp. 15719-15724 ◽  
Author(s):  
Alina Y. Rwei ◽  
Jung-Jae Lee ◽  
Changyou Zhan ◽  
Qian Liu ◽  
Meryem T. Ok ◽  
...  

Pain management would be greatly enhanced by a formulation that would provide local anesthesia at the time desired by patients and with the desired intensity and duration. To this end, we have developed near-infrared (NIR) light-triggered liposomes to provide on-demand adjustable local anesthesia. The liposomes contained tetrodotoxin (TTX), which has ultrapotent local anesthetic properties. They were made photo-labile by encapsulation of a NIR-triggerable photosensitizer; irradiation at 730 nm led to peroxidation of liposomal lipids, allowing drug release. In vitro, 5.6% of TTX was released upon NIR irradiation, which could be repeated a second time. The formulations were not cytotoxic in cell culture. In vivo, injection of liposomes containing TTX and the photosensitizer caused an initial nerve block lasting 13.5 ± 3.1 h. Additional periods of nerve block could be induced by irradiation at 730 nm. The timing, intensity, and duration of nerve blockade could be controlled by adjusting the timing, irradiance, and duration of irradiation. Tissue reaction to this formulation and the associated irradiation was benign.


Sign in / Sign up

Export Citation Format

Share Document