scholarly journals Temporal and Spatial Water Quality Assessment for Rivers in Metropolitan Areas Using Multivariate Statistics and Water Quality Indices: A Case Study of the Geumho River, Korea

Author(s):  
Chang Dae Jo ◽  
Jung Min Kim ◽  
Seong Min Kim ◽  
Heon Gak Kwon

Abstract The Geumho River in South Korea passes through a metropolitan area with a high population density and multiple industrial complexes and, therefore, the water quality of this river is of significance for human health and economic activities. This study aims to assess the water quality of the Geumho River to inform river water quality management and improve pollution control using multivariate statistics and the Korean Water Quality Index (KWQI). Principal component and factor analysis identified those factors related to organic pollutants and metabolism (principal factor 1), and phosphorus and fecal coliform content (principal factor 2). In a cluster analysis, time was considered by distinguishing between seasons (spring, summer, autumn, and winter) and space was considered based on upstream (US), midstream (MS), and downstream (DS) river sections. Seven temporal variables and six spatial variables were extracted from the discriminant analysis (DA) results; the most important water quality variables were high during the spring and summer seasons and in the MS and DS regions. Temporally, the KWQI was highest in winter (70.9) and lowest in spring (59.2), whereas spatially, KWQI values were highest in the US (67.5) and lowest in the MS (56.4) sections. These results indicate that to be most effective, water management interventions in the Geumho River should focus on the urban midstream section and spring seasons.

2015 ◽  
Vol 41 (4) ◽  
pp. 96-103 ◽  
Author(s):  
Danijela Voza ◽  
Milovan Vukovic ◽  
Ljiljana Takic ◽  
Djordje Nikolic ◽  
Ivana Mladenovic-Ranisavljevic

AbstractThe aim of this article is to evaluate the quality of the Danube River in its course through Serbia as well as to demonstrate the possibilities for using three statistical methods: Principal Component Analysis (PCA), Factor Analysis (FA) and Cluster Analysis (CA) in the surface water quality management. Given that the Danube is an important trans-boundary river, thorough water quality monitoring by sampling at different distances during shorter and longer periods of time is not only ecological, but also a political issue. Monitoring was carried out at monthly intervals from January to December 2011, at 17 sampling sites. The obtained data set was treated by multivariate techniques in order, firstly, to identify the similarities and differences between sampling periods and locations, secondly, to recognize variables that affect the temporal and spatial water quality changes and thirdly, to present the anthropogenic impact on water quality parameters.


2017 ◽  
Vol 19 (6) ◽  
pp. 942-952 ◽  
Author(s):  
M. Hassen Baouab ◽  
Semia Cherif

Abstract In order to reduce the number of operations for the assessment of potable water treatment, principal component analysis and hierarchical clustering are applied to large databases of raw and treated water of three treatment plants with various processes. It appears that the measurements can be divided into three clear groups, with a correlation higher than 0.8. The first contains salinity, conductivity, water hardness, calcium, magnesium and chlorides. The second includes turbidity and organic matter. The third includes pH and alkalinity. Despite the disparities in water quality and in all the cases, three parameters were sufficient to represent all the routine measurements: conductivity, turbidity and pH, which can represent the three principal components of the data. It can reduce by two-thirds of the measurement and analysis, dropping from 6,960 to 2,088 analysis annually. The analysis on the principal axes of the individuals, represented by raw and treated water from the three treatment plants, reveals that the quality of the raw water seems more important than the type of treatment process, in the resulting quality of treated water. These results could be generalized and easily adopted by other treatment plants whatever the process. They could offer substantial savings of time, chemicals, electricity and longevity of the devices.


2020 ◽  
Vol 13 (5) ◽  
pp. 2447
Author(s):  
Reinaldo Brandi Abreu Bifano ◽  
Catarina Da Rocha Marcolin ◽  
Maria Otávia Silva Crepaldi ◽  
Raquel Viana Quinelato ◽  
Adriana Tiemi Ramos Okumura ◽  
...  

Este estudo teve como objetivo avaliar a qualidade da água das microbacias dos rios Jardim e Mutari, situadas no Extremo Sul da Bahia, através da avaliação de parâmetros físicos, químicos, microbiológicos e do uso e ocupação da terra. Para isso foram realizadas quatro coletas, em abril, maio, julho e outubro de 2019, em 8 pontos amostrais, selecionados de acordo com possíveis fontes pontuais e difusas de poluição. Foram analisados os parâmetros temperatura, potencial hidrogeniônico (pH), salinidade, oxigênio dissolvido (OD), demanda bioquímica de oxigênio (DBO), nitrito, nitrato, amônia, nitrogênio total (NT), fósforo total (PT), sólidos dissolvidos totais, coliformes totais e termotolerantes, que foram comparados com o estabelecido pela CONAMA n° 357/2005. Já as análises de uso e ocupação da terra, foram realizadas utilizando o software QGIS. Com os resultados obtidos observou-se que os parâmetros pH, OD, DBO, PT e NT apresentaram valores em desacordo com o permitido pela legislação, principalmente nos pontos próximos às áreas urbanizadas. A análise estatística multivariada PCA, permitiu identificar diferenças na qualidade da água das microbacias no período seco e chuvoso.Já o teste Kruskal-Wallis indicou diferença significativa entre os ambientes analisados. Nossos resultados indicam que é de suma importância a tomada de ações por parte do poder público que visem minimizar os impactos causados pelo uso e ocupação desordenada da terra e atividades agrícolas na qualidade da água dessas bacias hidrográficas. Cabe destacar também a importância de ações voltadas a educação ambiental principalmente da população ribeirinha.  Water Quality Assessment in Hydrographic Watersheds in the Extreme South of Bahia, BrazilA B S T R A C TThis study aimed to evaluate the water quality of the Jardim and Mutari rivers, located in southern Bahia, by means of evaluating physical, chemical and microbiological parameters and land use and occupation. Four campaigns were carried out in April, May, July, and October, 2019, at 8 stations, selected according to possible punctual and diffusive sources of pollution. The water quality results were compared with that established by CONAMA n.º 357/2005and the Water Quality Index (IQA) was calculated from these. For data analysis, Principal Component Analysis (PCA) was also performed and Kruskal-Wallis tests were applied, using the PAST software.The land use and occupation analyses were performed using the QGIS software. We observed that the pH, OD, DBO, PT and NT were in disagreement with those allowed by the legislation, mainly near urban areas. The multivariate statistical analysis PCA, allowed to identify differences in the water quality of the watersheds in the dry and rainy period. The Kruskal-Wallis test indicated a significant difference between the environments analyzed.The supervised classification confirmed the need to recover areas along the riverbed within the analyzed micro-basins.Our results indicate it is crucial that public authorities act to minimize the impacts caused by the disorderly urban occupation and agricultural activities. It is also worth mentioning the importance of actions aimed at environmental education, mainly of the riverside population.Keywords: water quality, physical, chemical and biological parameters, hydrographic basins, rivers. 


2006 ◽  
Vol 54 (11-12) ◽  
pp. 47-55 ◽  
Author(s):  
S.-W. Liao ◽  
J.-Y. Sheu ◽  
J.-J. Chen ◽  
C.-G. Lee

Factor analysis was conducted to explain the characteristics and variation in the quality of water during the disassembly of oyster frames and fishery boxes. The result shows that the most important latent factors in the Tapeng Lagoon are the ocean factor, the primary productivity factor, and the fishery pollution factor. Canonical discriminant analysis is applied to identify the source of pollution in neighbouring rivers outside the Tapeng Lagoon. The two constructed discriminant functions (CDFs) showed a marked contribution to all the discriminant variables, and that total nitrogen, algae, dissolved oxygen, and total phosphate combined in the nutrient effect factor. The recognition capacities in these two CDFs were 95.6% and 4.4%, respectively. The water quality in the Kaoping river most strongly affected the water quality in the Tapeng Lagoon. Disassembling the oyster frames and fishery boxes improved the water quality markedly. However, environmental topographic conditions indicate that strengthening stream pollution prevention and constructing another entrance to the ocean are the best approaches for improving the quality of water in the Tapeng Lagoon by reducing eutrophication. These approaches and results yield useful information concerning habitat recovery and water resource management.


2021 ◽  
Vol 21 (7) ◽  
pp. 3975-3979
Author(s):  
Min-Jin Hwang ◽  
Jeongmin Cha ◽  
Eun-Sik Kim

In a fish farm, the water quality is important to ensure fish growth and farm productivity. However, the study of the quality of water using in aquaculture has been ignored until now. Although there are several methods to treat water, nanomaterials have not yet been applied for indoor fish farming because it may difficult to supply a sufficient amount of water, and the operating parameters have not been developed for recirculating aquaculture systems. Nanotechnology can be applied to treat water, specifically through adsorption and filtration, to produce drinking water from surface water and to treat wastewater by processing a high volume of effluent. The adsorption and filtration of seawater has also progressed to allow for desalination of seawater, and this is recognized as a necessary tool for extended treatment protocols of various types of seawater. This study investigated the treatment of aquaculture water using nano-porous adsorbents (e.g., pumice stone) to control the contaminants in seawater in order to maintain the water quality required for aquaculture. The results are used to derive an analytical relationship between the ionic species in aquaculture water, and this provides empirical parameters for a batch reactor for aquaculture. The quality of the influent and effluent for aquaculture is compared using time-series analyses to evaluate the reduction rate of ionic components and thus suggest the optimum condition for fish farming using bioreactor processes.


2020 ◽  
Vol 42 (10) ◽  
pp. 452-462
Author(s):  
Jinhyo Lee ◽  
Hyunju Ha ◽  
Manho Lee ◽  
Mokyoung Lee ◽  
Taeho Kim ◽  
...  

Objectives : 17 water quality measurement networks (WQMNs, tributaries) in Seoul were analyzed by using NSFWQI and cluster analysis to provide basic data for future river water quality management so that citizens could easily and comprehensively understand the water quality information on the rivers in Seoul.Methods : For the past 3 years (2015~2017), in order to estimate WQI, 9 items, DO (% sat), Fecal coliform, pH, BOD, Temperature change (TC), TP, NO3-, Turbidity and Total solids, were selected from among the 19 water quality data measurement items produced monthly from 17 WQMNs in Seoul. WQI was derived and graded using NSFWQI and cluster analysis was performed using Ward Linkage Method, SOM (Self Organizing Map).Results and Discussion : Water quality of most water quality monitoring networks was BOD Ⅱ grade (slightly good) or higher and TP Ⅲ grade (normal) or higher according to the standard of water quality and water ecosystem river living environment, and NSFWQI was also 64 (Medium)~89 (Good). All showed good water quality. NSFWQI does not show a significant difference by season, so it is believed that it is affected by anthropogenic sources rather than seasonal effects. As a result of examining the correlation between NSFWQI and water quality level according to environmental standards, it was confirmed that R2 has a relatively good correlation with 0.78, and there is no clear difference between the two groups, and through this, it was found that the currently implemented water quality rating system and NSFWQI are well matched. As a result of cluster analysis using ward linkage method and SOM for 17 WQMNs, it was largely divided into 6 groups according to water quality characteristics.Conclusions : It is important to manage pollution sources to systematically manage river water quality as a water resource. It is therefore expected that by converting from the complicated and various water quality information such as is found in this study into a simple water quality index and grouping, the river water quality can be easily understood and can be utilized in the future as basic data for water quality management in Seoul.


2016 ◽  
Vol 19 (2) ◽  
pp. 107-117
Author(s):  
Trang Thi Thuy Nguyen ◽  
Khoi Nguyen Dao

The objective of this study was to simulate the hydrologic characteristic and water quality of 3S rivers system (Sekong, Sesan and Srepok) using SWAT model (Soil and Water Analysis Tool). Agriculture and forest are the main land use types in this basin accounting for more than 80 % of the total area. Therfore, nitrogen and phosphorus were selected to be parameters for water quality assessment. SWAT-CUP model was applied to calibrate the model for stream flow and water quality based on SUFI-2 (Sequential Uncertainty Fitting version 2) method. The model performance has been assessed by three statistical indices, including coefficient corellation (R2), Nash-Sutcliffe efficient coefficience (NSE) and percentage Bias (PBIAS). The results showed that SWAT model was well calibrated for simulating the streamflow and water quality with the values of R2 greater than 0.5 except for the Attapeu and Kontum stations, and of PBIAS less than 10 % and 35 % for streamflow and water quality, respectively. The well-calibrated SWAT model can be applied in predicting the hydrology and water quality for other application. Furthermore, it is a tool supporting the policy makers to offer a suitable decisions regarding the sustainable river basin management.


Author(s):  
Akhand Archna ◽  
Shrivastava Sharad ◽  
Akhand Pratibha

The water quality of River Kshipra in stretch of 195 km was studied for water quality status using benthic macro invertebrates for all three seasons’ monsoon, winter and summer. The River water quality is subject to severe domestic and industrial pollution at compete stretch of River. In the present investigation a total of 13 Orders of macrobenthic fauna i.e. Ephemeroptera, Trichoptera, Placoptera, Coleoptera, Hemiptera, Odonata, Crustacea, Diptera, Pulmonata, Operculata, Pulmonata, Oligochaeta and Hirudinea belong to 3 Phylum’s Arthropoda, Mollusca and Annelida were reported. Arthropoda was the most dominant group in all seasons. On seasonal comparison of benthic fauna is observe that abundance were decreasing order were, Winter > Monsoon > summer. To monitor the water quality samples from two years (2010-12) from different stations were collected monthly. The works highlighted the condition of the River water in various seasons with respect of the seasonal abundance of the benthic macro-invertebrates organisms mentioned above.


Author(s):  
Rizky Muliani Dwi Ujianti ◽  
Althesa Androva

 Abstract. Banjir Kanal Barat is a river in the Garang watershed, Semarang City, Central Java, Indonesia. Its function is as a source of water for the community. The level of pollution in this river is already high. The purpose of this study is to provide advice to governments, communities and related stakeholders to realize integrated river management, and fisheries-based food security is achieved. This research method is: analyzing the water quality of the Banjir Kanal Barat river, and analyzing the amount of faecal and total coliform bacteria content in the Banjir Kanal Barat river, and analyzing how to overcome the decline in the quality of waters of the Banjir Kanal Barat river due to faecal and total coliform bacteria pollution. The results showed that the water quality at the research location was still in the quality standard. The content of coliform dan faecal bacteria at the study site exceeds the quality standard, this is due to the influence of domestic waste from households. The thing that needs to be done is counseling the existence of a clean and healthy life, especially for people who are still throwing domestic waste into the river. The existence of water purification equipment is also very necessary to overcome this problem. Water quality management can be done with policy analysis. Regulations related to water quality management can be analyzed and then given solutions and recommendations related to these rules so that policies can be taken that are sustainable, integrated, and coordinated between various parties in managing river water quality and food security. Keywords: food security, water quality, river, faecal coliform, total coliform


2018 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Susanti Oktavia Ningrum

The quality of wastewater sugar factory produced will affect the environmental health quality around the factory. The study aimed to analyze the quality of water river and the quality of wells around the Rejo Agung Baru sugar factory in the Madiun. This study is an descriptive observational. The samples comprised of 5 sampels of water rivers and 7 samples of well water. The results of the study at the quality of water river showed that there are parameters (BOD5 and temperature) unqualified with the quality standards based on the East Java Regional Regulation No. 2 of 2008 about Water Quality Management and Water Pollution Control in the East Java, the quality of water river is also affected by the waste water, trash, agricultural waste, and other pollutants. The result of measuring the quality of water well showed that there are parameters (organic substance) unqualified with quality standards based on Permenkes No: 416/Menkes/PER/ IX/1990 about the Terms and Water Quality Monitoring, the quality of Well water is also affected by the quality of water river, a distance of toilet, domestic wastewater and other pollutants. The quality of water river and the quality of well water have decreased that required supervision on the quality of a river water and the quality of water of a well.


Sign in / Sign up

Export Citation Format

Share Document