scholarly journals Does the Atmospheric Global Model MRI-AGCM3.2 Perform Better than CMIP6 Atmospheric Models in Simulating Precipitation?

Author(s):  
Shoji Kusunoki ◽  
Tosiyuki Nakaegawa ◽  
Ryo Mizuta

Abstract The performance of the Meteorological Research Institute-Atmospheric General Circulation model version 3.2 (MRI-AGCM3.2) in simulating precipitation is compared with that of global atmospheric models registerred to the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The MRI-AGCM3.2 with the grid size of 20-km and 60-km and 36 CMIP6 models are forced with observed sea surface temperature for 20-year period from 1995 to 2014. The horizontal resolution of the MRI-AGCM3.2 is relatively finer than CMIP6 models. As for global domain, the reproducibility of MRI-AGCM3.2 models are better than or equal to CMIP6 models in simulating geographical distribution of annual precipitation and intense precipitation events. Models with higher horizontal resolution tend to be better than those with lower resolution in simulating global precipitation. As for East Asia, the performance of MRI-AGCM3.2 models are better than or equal to CMIP6 models in simulating summertime monthly precipitation and the seasonal march in the Japanese rainy season, and extreme precipitation events. Higher horizontal resolution models also tend to perform better than lower resolution models in simulating precipitation over East Asia. The advantage of models with higher horizontal resolution over those with lower resolution in reproducing precipitation is more evident over East Asia than over the globe.

2015 ◽  
Vol 28 (14) ◽  
pp. 5601-5621 ◽  
Author(s):  
Shoji Kusunoki ◽  
Osamu Arakawa

Abstract The performance of climate models participating in phases 5 and 3 of the Coupled Model Intercomparison Project (CMIP5 and CMIP3, respectively) is evaluated and compared with respect to precipitation over East Asia (20°–50°N, 110°–150°E). The target period covers the 20 years from 1981 through 2000. The CMIP5 and CMIP3 models underestimate precipitation amounts over East Asia in the warmer season (May–September), while they overestimate precipitation amounts in the colder season (October–April). Both sets of models have some difficulty in simulating the seasonal march of the rainy season over China, the Korean Peninsula, and Japan, and they also underestimate the precipitation intensity over East Asia. Nevertheless, the CMIP5 models show a higher reproducibility of precipitation over East Asia than the CMIP3 models with respect to the geographical distribution of precipitation throughout the year, seasonal march of the rainy season, and extreme precipitation events. Models with a higher reproducibility of annual precipitation tend to show a higher reproducibility of precipitation intensity for both the CMIP5 and CMIP3 models. Correlation analysis using all of the CMIP5 and CMIP3 models reveals that models with higher horizontal resolution tend to perform better than those with a lower resolution. The advantage of the CMIP5 models over the CMIP3 models in the simulation of the East Asian climate can be partly attributed to the improved representation of the west Pacific subtropical high in the CMIP5 models, especially during the summer.


2012 ◽  
Vol 12 (2) ◽  
pp. 961-987 ◽  
Author(s):  
A. Pozzer ◽  
A. de Meij ◽  
K. J. Pringle ◽  
H. Tost ◽  
U. M. Doering ◽  
...  

Abstract. The new global anthropogenic emission inventory (EDGAR-CIRCE) of gas and aerosol pollutants has been incorporated in the chemistry general circulation model EMAC (ECHAM5/MESSy Atmospheric Chemistry). A relatively high horizontal resolution simulation is performed for the years 2005–2008 to evaluate the capability of the model and the emissions to reproduce observed aerosol concentrations and aerosol optical depth (AOD) values. Model output is compared with observations from different measurement networks (CASTNET, EMEP and EANET) and AODs from remote sensing instruments (MODIS and MISR). A good spatial agreement of the distribution of sulfate and ammonium aerosol is found when compared to observations, while calculated nitrate aerosol concentrations show some discrepancies. The simulated temporal development of the inorganic aerosols is in line with measurements of sulfate and nitrate aerosol, while for ammonium aerosol some deviations from observations occur over the USA, due to the wrong temporal distribution of ammonia gas emissions. The calculated AODs agree well with the satellite observations in most regions, while negative biases are found for the equatorial area and in the dust outflow regions (i.e. Central Atlantic and Northern Indian Ocean), due to an underestimation of biomass burning and aeolian dust emissions, respectively. Aerosols and precursors budgets for five different regions (North America, Europe, East Asia, Central Africa and South America) are calculated. Over East-Asia most of the emitted aerosols (precursors) are also deposited within the region, while in North America and Europe transport plays a larger role. Further, it is shown that a simulation with monthly varying anthropogenic emissions typically improves the temporal correlation by 5–10% compared to one with constant annual emissions.


2004 ◽  
Vol 17 (23) ◽  
pp. 4575-4589 ◽  
Author(s):  
Charles Jones ◽  
Duane E. Waliser ◽  
K. M. Lau ◽  
W. Stern

Abstract This study investigates 1) the eastward propagation of the Madden–Julian oscillation (MJO) and global occurrences of extreme precipitation, 2) the degree to which a general circulation model with a relatively realistic representation of the MJO simulates its influence on extremes, and 3) a possible modulation of the MJO on potential predictability of extreme precipitation events. The observational analysis shows increased frequency of extremes during active MJO phases in many locations. On a global scale, extreme events during active MJO periods are about 40% higher than in quiescent phases of the oscillation in locations of statistically significant signals. A 10-yr National Aeronautics and Space Administration (NASA) Goddard Laboratory for the Atmospheres (GLA) GCM simulation with fixed climatological SSTs is used to generate a control run and predictability experiments. Overall, the GLA model has a realistic representation of extremes in tropical convective regions associated with the MJO, although some shortcomings also seem to be present. The GLA model shows a robust signal in the frequency of extremes in the North Pacific and on the west coast of North America, which somewhat agrees with observational studies. The analysis of predictability experiments indicates higher success in the prediction of extremes during an active MJO than in quiescent situations. Overall, the predictability experiments indicate the mean number of correct forecasts of extremes during active MJO periods to be nearly twice the correct number of extremes during quiescent phases of the oscillation in locations of statistically significant signals.


2019 ◽  
Vol 32 (8) ◽  
pp. 2169-2183 ◽  
Author(s):  
Weili Duan ◽  
Naota Hanasaki ◽  
Hideo Shiogama ◽  
Yaning Chen ◽  
Shan Zou ◽  
...  

AbstractEvaluation of Chinese precipitation extremes is conducted based on large ensemble projections of the present climate and 4-K-warmer climates derived from a high-resolution atmospheric general circulation model. The model reproduced the overall trend and magnitude of total precipitation and extreme precipitation events for China reasonably well, revealing that this dataset can represent localized precipitation extremes. Precipitation extremes are more frequent and more severe in future projections under 4-K-warmer climates than in the representative concentration pathway 8.5 (RCP8.5) scenario of phase 5 of the Coupled Model Intercomparison Project (CMIP5). Our results show that using a large-ensemble simulation can improve the ability to estimate with high precision both the precipitation mean and the precipitation extremes compared with small numbers of simulations, and the averaged maximum yearly precipitation will be likely to increase by approximately 18% under a +4-K future in southern China compared with the past. Finally, uncertainty evaluation in future precipitation projections indicates that the component caused by the difference in six ΔSST patterns is more important in southern China compared with the component due to the atmospheric internal variability. All these results could provide valuable insights in simulating and predicting precipitation extremes in China.


2018 ◽  
Vol 115 (11) ◽  
pp. 2681-2686 ◽  
Author(s):  
S. Sandeep ◽  
R. S. Ajayamohan ◽  
William R. Boos ◽  
T. P. Sabin ◽  
V. Praveen

Cyclonic atmospheric vortices of varying intensity, collectively known as low-pressure systems (LPS), travel northwest across central India and produce more than half of the precipitation received by that fertile region and its ∼600 million inhabitants. Yet, future changes in LPS activity are poorly understood, due in part to inadequate representation of these storms in current climate models. Using a high-resolution atmospheric general circulation model that realistically simulates the genesis distribution of LPS, here we show that Indian monsoon LPS activity declines about 45% by the late 21st century in simulations of a business-as-usual emission scenario. The distribution of LPS genesis shifts poleward as it weakens, with oceanic genesis decreasing by ∼60% and continental genesis increasing by ∼10%; over land the increase in storm counts is accompanied by a shift toward lower storm wind speeds. The weakening and poleward shift of the genesis distribution in a warmer climate are confirmed and attributed, via a statistical model, to the reduction and poleward shift of low-level absolute vorticity over the monsoon region, which in turn are robust features of most coupled model projections. The poleward shift in LPS activity results in an increased frequency of extreme precipitation events over northern India.


2018 ◽  
Vol 22 (10) ◽  
pp. 1-22 ◽  
Author(s):  
Andrew R. Bock ◽  
Lauren E. Hay ◽  
Gregory J. McCabe ◽  
Steven L. Markstrom ◽  
R. Dwight Atkinson

Abstract The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.


2017 ◽  
Vol 24 (4) ◽  
pp. 681-694 ◽  
Author(s):  
Yuxin Zhao ◽  
Xiong Deng ◽  
Shaoqing Zhang ◽  
Zhengyu Liu ◽  
Chang Liu ◽  
...  

Abstract. Climate signals are the results of interactions of multiple timescale media such as the atmosphere and ocean in the coupled earth system. Coupled data assimilation (CDA) pursues balanced and coherent climate analysis and prediction initialization by incorporating observations from multiple media into a coupled model. In practice, an observational time window (OTW) is usually used to collect measured data for an assimilation cycle to increase observational samples that are sequentially assimilated with their original error scales. Given different timescales of characteristic variability in different media, what are the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA? With a simple coupled model that simulates typical scale interactions in the climate system and twin CDA experiments, we address this issue here. Results show that in each coupled medium, an optimal OTW can provide maximal observational information that best fits the characteristic variability of the medium during the data blending process. Maintaining correct scale interactions, the resulting CDA improves the analysis of climate signals greatly. These simple model results provide a guideline for when the real observations are assimilated into a coupled general circulation model for improving climate analysis and prediction initialization by accurately recovering important characteristic variability such as sub-diurnal in the atmosphere and diurnal in the ocean.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1543
Author(s):  
Reinhardt Pinzón ◽  
Noriko N. Ishizaki ◽  
Hidetaka Sasaki ◽  
Tosiyuki Nakaegawa

To simulate the current climate, a 20-year integration of a non-hydrostatic regional climate model (NHRCM) with grid spacing of 5 and 2 km (NHRCM05 and NHRCM02, respectively) was nested within the AGCM. The three models did a similarly good job of simulating surface air temperature, and the spatial horizontal resolution did not affect these statistics. NHRCM02 did a good job of reproducing seasonal variations in surface air temperature. NHRCM05 overestimated annual mean precipitation in the western part of Panama and eastern part of the Pacific Ocean. NHRCM05 is responsible for this overestimation because it is not seen in MRI-AGCM. NHRCM02 simulated annual mean precipitation better than NHRCM05, probably due to a convection-permitting model without a convection scheme, such as the Kain and Fritsch scheme. Therefore, the finer horizontal resolution of NHRCM02 did a better job of replicating the current climatological mean geographical distributions and seasonal changes of surface air temperature and precipitation.


Sign in / Sign up

Export Citation Format

Share Document