scholarly journals PPARg Dysfunction in the Medial Prefrontal Cortex Mediates High-Fat Diet-Induced Depression

Author(s):  
Cong-Cong Fu ◽  
Xin-Yi Zhang ◽  
Liu Xu ◽  
Hui-Xian Huang ◽  
Shuang Xu ◽  
...  

Abstract ObjectiveEpidemiological studies suggest a bidirectional association between depression and obesity; however, the biological mechanisms that link the development of depression to a metabolic disorder remain unclear. Even though nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) agonists show anti-depressive effect, and high-fat diet-(HFD)-induced PPARγ dysfunction is involved in the pathogenesis of metabolic disorders, the neuronal PPARg has never been studied in HFD-induced depression. Thus, we aimed to investigate the effect of neuronal PPARγ on depressive-like behaviors in HFD-induced obese mice. MethodsWe fed male C57BL/6J mice with HFD to generate obese mice and conducted a series of behavioral tests to assess the effects of HFD feeding on depression. We generated neuron-specific PPARγ knockout mice (NKO) to determine whether neuronal PPARg deficiency was correlated with depressive-like behaviors. To further prove whether PPARγ in the medial prefrontal cortex (mPFC) neurons is involved in depressive-like behaviors, we applied AAV- CaMKIIa-Cre approach to specifically knockout PPARγ in the mPFC neurons of LoxP mice and used AAV-syn-PPARγ vectors to overexpress PPARγ in the mPFC neurons of NKO mice. ResultsWe observed a low mPFC PPARγ level and an increase in depressive-like behaviors in the HFD-fed mice. Moreover, neuronal-specific PPARγ deficiency in mice induced depressive-like behaviors, which could be abolished by imipramine. Furthermore, overexpressing PPARg in the mPFC reversed the depressive-like behaviors in HFD-fed mice as well as in neuronal-specific PPARγ knockout mice. ConclusionsThese results implicate that dysregulation of neuronal PPARγ in the mPFC may contribute to an increased risk for depression in obese populations.

2017 ◽  
Vol 4 (11) ◽  
pp. 170917 ◽  
Author(s):  
Yanyun Pan ◽  
Dandan Zhao ◽  
Na Yu ◽  
Tian An ◽  
Jianan Miao ◽  
...  

Curcumin is an active component derived from Curcuma longa L. which is a traditional Chinese medicine that is widely used for treating metabolic diseases through regulating different molecular pathways. Here, in this study, we aimed to comprehensively investigate the effects of curcumin on glycolipid metabolism in vivo and in vitro and then determine the underlying mechanism. Male C57BL/6 J obese mice and 3T3-L1 adipocytes were used for in vivo and in vitro study, respectively. Our results demonstrated that treatment with curcumin for eight weeks decreased body weight, fat mass and serum lipid profiles. Meanwhile, it lowered fasting blood glucose and increased the insulin sensitivity in high-fat diet-induced obese mice. In addition, curcumin stimulated lipolysis and improved glycolipid metabolism through upregulating the expressions of adipose triglyceride lipase and hormone-sensitive lipase, peroxisome proliferator activated receptor γ/α (PPARγ/α) and CCAAT/enhancer binding proteinα (C/EBPα) in adipose tissue of the mice. In differentiated 3T3-L1 cells, curcumin reduced glycerol release and increased glucose uptake via upregulating PPARγ and C/EBPα. We concluded that curcumin has the potential to improve glycolipid metabolism disorders caused by obesity through regulating PPARγ signalling pathway.


2019 ◽  
Vol 7 (7) ◽  
pp. 194 ◽  
Author(s):  
Kai Zhu ◽  
Fang Tan ◽  
Jianfei Mu ◽  
Ruokun Yi ◽  
Xianrong Zhou ◽  
...  

Sichuan pickle is a traditional fermented food in China which is produced by the spontaneous fermentation of Chinese cabbage. In this study, the anti-obesity effects of a new lactic acid bacterium (Lactobacillus fermentum CQPC05, LF-CQPC05) isolated from Sichuan pickles were assessed in vivo. An obese animal model was established in mice by inducing obesity with high-fat diet. Both serum and tissues were collected from the mice, and then subjected to qPCR and Western blot analyses. The results showed that LF-CQPC05 could decrease the values of hepatosomatic, epididymal fat, and perirenal fat indices that were induced by a high-fat diet in mice. Moreover, LF-CQPC05 reduced the levels of alanine aminotransferase (ALT), aspartate aminotransaminase (AST), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C), and increased the level of high-density lipoprotein cholesterol (HDL-C) in both serum samples and liver tissues of obese mice fed with a high-fat diet. Pathological observations demonstrated that LF-CQPC05 could alleviate the obesity-induced pathological changes in the liver tissue of mice, and reduce the degree of adipocyte enlargement. The results of qPCR and Western blot analyses further indicated that LF-CQPC05 upregulated the mRNA and protein expression levels of lipoprotein lipase (LPL), PPAR-α: peroxisome proliferator-activated receptor-alpha (PPAR-α), (cholesterol 7 alpha-hydroxylase) CYP7A1, and carnitine palmitoyltransferase 1 (CPT1A), and downregulated the expression levels of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and CCAAT enhancer-binding protein alpha (C/EBP-α) in both liver tissue and epididymal adipose tissue. Taken altogether, this study reveals that LF-CQPC05 can effectively inhibit high-fat diet-induced obesity. Its anti-obesity effect is comparable to that of l-carnitine, and is superior to that of Lactobacillus delbrueckii subsp. bulgaricus, a common strain used in the dairy industry. Therefore, LF-CQPC05 is a high-quality microbial strain with probiotic potential.


2014 ◽  
Vol 306 (7) ◽  
pp. E824-E837 ◽  
Author(s):  
Jessica A. Bonzo ◽  
Chad Brocker ◽  
Changtao Jiang ◽  
Rui-Hong Wang ◽  
Chu-Xia Deng ◽  
...  

Peroxisome proliferator-activated receptor-α (PPARα) mediates metabolic remodeling, resulting in enhanced mitochondrial and peroxisomal β-oxidation of fatty acids. In addition to the physiological stimuli of fasting and high-fat diet, PPARα is activated by the fibrate class of drugs for the treatment of dyslipidemia. Sirtuin 1 (SIRT1), an important regulator of energy homeostasis, was downregulated in fibrate-treated wild-type mice, suggesting PPARα regulation of Sirt1 gene expression. The impact of SIRT1 loss on PPARα functionality in vivo was assessed in hepatocyte-specific knockout mice that lack the deacetylase domain of SIRT1 ( Sirt1 ΔLiv). Knockout mice were treated with fibrates or fasted for 24 h to activate PPARα. Basal expression of the PPARα target genes Cyp4a10 and Cyp4a14 was reduced in Sirt1 ΔLiv mice compared with wild-type mice. However, no difference was observed between wild-type and Sirt1 ΔLiv mice in either fasting- or fibrate-mediated induction of PPARα target genes. Similar to the initial results, there was no difference in fibrate-activated PPARα gene induction. To assess the relationship between SIRT1 and PPARα in a pathophysiological setting, Sirt1 ΔLiv mice were maintained on a high-fat diet for 14 wk, followed by fibrate treatment. Sirt1 ΔLiv mice exhibited increased body mass compared with control mice. In the context of a high-fat diet, Sirt1 ΔLiv mice did not respond to the cholesterol-lowering effects of the fibrate treatment. However, there were no significant differences in PPARα target gene expression. These results suggest that, in vivo, SIRT1 deacetylase activity does not significantly impact induced PPARα activity.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Dandan Zhao ◽  
Yanyun Pan ◽  
Na Yu ◽  
Ying Bai ◽  
Rufeng Ma ◽  
...  

Accumulating evidence suggests that mitochondrial dysfunction and adipocyte differentiation promote lipid accumulation in the development of obesity and diabetes. Curcumin is an active ingredient extracted from Curcuma longa that has been shown to exhibit antioxidant and anti-inflammatory potency in metabolic disorders. However, the underlying mechanisms of curcumin in adipocytes remain largely unexplored. We studied the effects of curcumin on adipogenic differentiation and mitochondrial oxygen consumption and analysed the possible mechanisms. 3T3-L1 preadipocytes were used to assess the effect of curcumin on differentiation of adipocytes. The Mito Stress Test measured by Seahorse XF Analyzer was applied to investigate the effect of curcumin on mitochondrial oxygen consumption in 3T3-L1 adipocytes. The effect of curcumin on the morphology of both white and brown adipose tissue (WAT and BAT) was evaluated in a high-fat diet-induced obese mice model. We found that curcumin dose-dependently (10, 20 and 35 µM) induced adipogenic differentiation and the intracellular fat droplet accumulation. Additionally, 10 µM curcumin remarkably enhanced mature adipocyte mitochondrial respiratory function, specifically, accelerating basic mitochondrial respiration, ATP production and uncoupling capacity via the regulation of peroxisome proliferator-activated receptor γ (PPARγ) ( p < 0.01). Curcumin administration also attenuated the morphological changes in adipose tissues in high-fat diet-induced obese mice. Moreover, curcumin markedly increased the mRNA and protein expressions of mitochondrial uncoupling protein 1 (UCP1), PPARγ, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and PR domain protein 16 (PRDM16) in vivo and in vitro . Collectively, the results demonstrate that curcumin promotes the adipogenic differentiation of preadipocytes and mitochondrial oxygen consumption in 3T3-L1 mature adipocytes by regulating UCP1, PRDM16, PPARγ and PGC-1α expression.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yoon-Young Sung ◽  
Taesook Yoon ◽  
Won-Kyung Yang ◽  
Seung Ju Kim ◽  
Dong-Seon Kim ◽  
...  

The antiobesity effects of aP. aviculareethanol extract (PAE) in high-fat diet- (HFD-) induced obese mice were investigated. The mice were fed an HFD or an HFD supplemented with PAE (400 mg/kg/day) for 6.5 weeks. The increased body weights, adipose tissue weight, and adipocyte area as well as serum total triglyceride, leptin, and malondialdehyde concentrations were decreased in PAE-treated HFD-induced obese mice relative to the same measurements in untreated obese mice. Furthermore, PAE significantly suppressed the elevated mRNA expression levels of sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptorγ, fatty acid synthase, and adipocyte protein 2 in the white adipose tissue of obese mice. In addition, PAE treatment of 3T3-L1 cells inhibited adipocyte differentiation and fat accumulation in a dose-dependent manner. These results suggest that PAE exerts antiobesity effects in HFD-induced obese mice through the suppression of lipogenesis in adipose tissue and increased antioxidant activity.


2014 ◽  
Vol 34 (4) ◽  
pp. 830-836 ◽  
Author(s):  
Wai San Cheang ◽  
Xiao Yu Tian ◽  
Wing Tak Wong ◽  
Chi Wai Lau ◽  
Susanna Sau-Tuen Lee ◽  
...  

Objective— 5′ Adenosine monophosphate–activated protein kinase (AMPK) interacts with peroxisome proliferator–activated receptor δ (PPARδ) to induce gene expression synergistically, whereas the activation of AMPK inhibits endoplasmic reticulum (ER) stress. Whether the vascular benefits of antidiabetic drug metformin (AMPK activator) in diabetes mellitus and obesity is mediated by PPARδ remains unknown. We aim to investigate whether PPARδ is crucial for metformin in ameliorating ER stress and endothelial dysfunction induced by high-fat diet. Approach and Results— Acetylcholine-induced endothelium-dependent relaxation in aortae was measured on wire myograph. ER stress markers were determined by Western blotting. Superoxide production in mouse aortae and NO generation in mouse aortic endothelial cells were assessed by fluorescence imaging. Endothelium-dependent relaxation was impaired and ER stress markers and superoxide level were elevated in aortae from high-fat diet–induced obese mice compared with lean mice. These effects of high-fat diet were reversed by oral treatment with metformin in diet-induced obese PPARδ wild-type mice but not in diet-induced obese PPARδ knockout littermates. Metformin and PPARδ agonist GW1516 reversed tunicamycin (ER stress inducer)-induced ER stress, oxidative stress, and impairment of endothelium-dependent relaxation in mouse aortae as well as NO production in mouse aortic endothelial cells. Effects of metformin were abolished by cotreatment of GSK0660 (PPARδ antagonist), whereas effects of GW1516 were unaffected by compound C (AMPK inhibitor). Conclusions— Metformin restores endothelial function through inhibiting ER stress and oxidative stress and increasing NO bioavailability on activation of AMPK/PPARδ pathway in obese diabetic mice.


2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Ya Wu ◽  
Fang Tan ◽  
Tianyu Zhang ◽  
Binglin Xie ◽  
Lixian Ran ◽  
...  

Abstract Lotus leaves (Nelumbo nucifera) are widely used in medicines and foods. The investigate systematically studied the anti-obesity effect of lotus leaf extracts. It could reduce body weight, alleviate liver damage, and inhibit fat accumulation in high-fat-diet-induced obese mice. Lotus leaf extracts reduced serum alanine aminotransferase (ALT), aspartate transaminase (AST), and alkaline phosphatase (AKP) levels; decreased total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) levels in the serum; and increased high-density lipoprotein cholesterol (HDL-C) levels to improve dyslipidemia. Lotus leaves also inhibited inflammation accompanied by obesity via decreasing inflammatory cytokine interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), interferon gamma (IFN-γ), and IL-6 levels and increasing anti-inflammatory cytokine IL-4 and IL-10 levels. qPCR analysis revealed that lotus leaves upregulated peroxisome proliferator-activated receptor alpha (PPAR-α), lipoprotein lipase (LPL), carnitine palmitoyltransferase 1 (CPT1), and cholesterol 7 alpha hydroxylase (CYP7A1) mRNA expressions and downregulated peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT/enhancer-binding protein alpha (C/EBP-α) mRNA expressions, to reduce adipocyte differentiation and fat accumulation, promote oxidation of fat and decomposition of triglyceride and cholesterol. So, lotus leaves effectively regulated lipid metabolism, alleviated inflammation and liver injury in obese mice; thus, lotus leaves could be further developed as a food to combat obesity.


Sign in / Sign up

Export Citation Format

Share Document