scholarly journals Geospatial View of Air Pollution and Health Risk over North Indian Region in COVID-19 Scenario

Author(s):  
Dharmendra Singh ◽  
Minakshi Dahiya ◽  
Chintan Nanda

Abstract Air pollutant concentration, Air Quality Index (AQI) and Excess Risk (ER %) is assessed in three scenarios including pre-lockdown, lockdown and post-lockdown based on 47 ground station data (during January 2020 to June 2020) distributed over northern part of India using statistics and geographic information system (GIS) techniques. Significant decrease in pollutants concentration, AQI and ER % was observed in lockdown period amid COVID-19. PM2.5, PM10, NO2, NH3 and CO decreased by 46%, 31%, 39%, 24% and 34% respectively, in lockdown scenario as compared to the pre-lockdown scenario. A decrease of 39% in AQI was observed as compared to pre-lockdown scenario however the difference was less when compared with post-lockdown scenario. The decrease in total ER % was 60.36 % over the study area due to improvement in air quality amid COVID-19 lockdown. The meteorological conditions were found consistent in the current year with respect to previous year and very less influence was observed on the concentration of air pollutants. The major implications of the current findings are air pollution management, health risk management, and pollution source and type identification.

Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 750
Author(s):  
Hoang Ngoc Khue Vu ◽  
Quang Phuc Ha ◽  
Duc Hiep Nguyen ◽  
Thi Thu Thuy Nguyen ◽  
Thoai Tam Nguyen ◽  
...  

Along with its rapid urban development, Ho Chi Minh City (HCMC) in recent years has suffered a high concentration of air pollutants, especially fine particulate matters or PM2.5. A comprehensive study is required to evaluate the air quality conditions and their health impact in this city. Given the lack of adequate air quality monitoring data over a large area of the size of HCMC, an air quality modeling methodology is adopted to address the requirement. Here, by utilizing a corresponding emission inventory in combination with The Air Pollution Model-Chemical Transport Model (TAPM-CTM), the predicted concentration of air pollutants is first obtained for PM2.5, NOx, and SO2. Then by associating the pollutants exposed with the mortality rate from three causes, namely Ischemic Heart Disease (IHD), cardiopulmonary, and lung cancer, the impact of air pollution on human health is obtained for this purpose. Spatial distribution has shown a high amount of pollutants concentrated in the central city with a high density of combustion vehicles (motorcycles and automobiles). In addition, a significant amount of emissions can be observed from stevedoring and harbor activities, including ferries and cargo handling equipment located along the river. Other sources such as household activities also contribute to an even distribution of emission across the city. The results of air quality modeling showed that the annual average concentrations of NO2 were higher than the standard of Vietnam National Technical Regulation on Ambient Air Quality (QCVN 05: 2013 40 µg/m3) and World Health Organization (WHO) (40 µg/m3). The annual average concentrations of PM2.5 were 23 µg/m3 and were also much higher than the WHO (10 µg/m3) standard by about 2.3 times. In terms of public health impacts, PM2.5 was found to be responsible for about 1136 deaths, while the number of mortalities from exposure to NO2 and SO2 was 172 and 89 deaths, respectively. These figures demand some stringent measures from the authorities to potentially remedy the alarming situation of air pollution in HCM City.


Author(s):  
Omar Kairan ◽  
Nur Nasehah Zainudin ◽  
Nurul Hasya Mohd Hanafiah ◽  
Nur Emylia Arissa Mohd Jafri ◽  
Fukayhah Fatiha @Suhami ◽  
...  

Air pollution has become an issue at all rates in the world. In Malaysia, there is a system is known as air quality index (API) used to indicate the overall air quality in the country where the air pollutants include or the new ambient air quality standard are sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3) and particulate matter with size less than 10 (PM10). The concentration levels of the air pollutants were said to be affected by the monsoon changes. Therefore, this study is conducted to examine the existence of temporal variations of each air pollutant then identify the differences of each air pollutants concentration in temporal variations. This study uses secondary data where data that has been retrieved from the Department of Environment (DOE) where it is data of air pollution specifically for Kota Bharu, kelantan records. Hierarchical agglomerative cluster analysis was conducted to group monthly air quality. As a conclusion, the study can conclude that the five air pollutants grouped into several different monthly clusters mostly representing the two main monsoon seasons. Mostly air pollutant varied accordingly towards the monsoon season. During the southwestern monsoon, air pollutant concentration tends to higher compare to the northeastern monsoon with mostly due to meteorological factors.


2020 ◽  
Author(s):  
Jinhee Kwon ◽  
Jeongeun Hwang ◽  
Hahn Yi ◽  
Hyun-Jin Bae ◽  
Miso Jang ◽  
...  

Abstract Background : Associations between long-term exposure to common air pollutants including nitrogen dioxide, carbon monoxide, sulfur dioxide (SO 2 ), ozone, and particulate matter (PM 10 ) and health consequences have been studied. We investigated spatial effects of exposure to air pollution on mortality by circulatory and respiratory diseases nation-wide and in metropolitan. Methods: Means of daily concentration of the common air pollutants from 2005 to 2016 were calculated by district unit using linear interpolation. Age-standardized mortality rates of people suffering from heart disease (HD); cerebrovascular disease (CVD); ischemic heart disease (IHD); pneumonia (PN) and chronic lower respiratory disease (CLRD) were acquired from population census data. Sub-divided comparisons were performed to adjust spatial heterogeneity. Pearson’s correlation coefficients between mortality rates and air pollutant concentrations were investigated. Multivariable linear regressions were performed to investigate associations considering confounding factors. Results: Air pollutant concentration in metropolitan was the highest, except SO 2 ; in particular, PM 10 concentration was higher than air quality standard (PM 10 : 55.27 µg/m 3 , air quality standard: 50.00 µg/m 3 , P<0.05). Pearson’s correlation coefficient between PM 10 and mortality rates was significant ( r =0.313, 0.596, 0.420, -0.277 and 0.523 for HD, CVD, IHD, PN, and CLRD, all P<0.05) in metropolitan. The powers of regression model for PM 10 , smoking rate, education level, and population density were 0.532 and 0.482 (adjusted R 2 ) for mortality rates of CVD and CLRD, respectively. Conclusion : Long-term exposure study with sub-divided analysis showed overall associations between air pollution exposure and circulatory and respiratory disease mortalities. PM 10 exposure was significantly associated with mortality of CVD and CLRD in metropolitan.


2020 ◽  
Author(s):  
Zhao keming

&lt;p&gt;Using hourly air pollutants concentration from six environmental monitor stations, meteorological data and wind profile radar data in winter during 2013-2015, the influences of shallow foehn on diffusion conditions and air pollution concentration over Urumqi were analyzed. The results showed the occurrence frequency of shallow foehn was 57.3% in Urumqi in winter. The flow depth, base height and top height of shallow foehn were about 1500 m, 600 m and 2100 m, respectively. The maximum mixing layer depth, the inversion depth, the temperature difference between the top and bottom of inversion layer on foehn days were 200 m lower, 344m thicker and 4.4&amp;#8451; higher than the corresponding values on non-foehn days, respectively. However, the differences of wind speed and inversion intensity between on foehn days and on non-foehn days were slight. Also, the frequency of each pollution level on foehn days was higher than on non-foehn days with extra frequency of 18% from level &amp;#8546; to level &amp;#8549;. Moreover, there was foehn existence on days with air pollution level &amp;#8549;. Except for O&lt;sub&gt;3&lt;/sub&gt;, the other five air pollutant concentrations at each environmental station on foen days were all higher than on non-foehn days but with similar diurnal variation. The spatial distributions of six air pollutants on foehn days and non-foehn days were almost same. Overall, the air quality at south urban area was relative excellent than other areas.&lt;/p&gt;


2021 ◽  
Author(s):  
K C Gouda ◽  
Priya Singh ◽  
P Nikhilasuma ◽  
Mahendra Benke ◽  
Reshama Kumari ◽  
...  

Abstract The Coronavirus disease 2019 (COVID-19), which became a global pandemic by March 2020 (WHO, 2020), forced almost all countries over the world to impose the lockdown as a measure of social distancing to control the spread of infection. India also strictly implemented a countrywide lockdown, starting from 24th March onwards. This measure resulted in the reduction of the sources of air pollution in general; industrial, commercial, and vehicular pollution in particular, with visible improvement in Ambient Air Quality. In this study, the impact of COVID-19 lockdown on the ambient concentration of air pollutants over the city of Bengaluru (India) is assessed using Continuous Ambient Air Quality Measurement (CAAQM) data from 10 monitoring stations spread across the city. The data was obtained from Central Pollution Control Board (CPCB) and Karnataka State Pollution Control Board (KSPCB). The analysis of the relative changes in the ambient concentration of six major air pollutants (NO, NO2, NOX, PM2.5, O3, and SO2) been carried out for two periods; March-May 2020 (COVID-19 lockdown) and the corresponding period of 2019 which was Non-COVID. The analysis revealed significant reduction in the concentration of ambient air pollutants at both daily and monthly intervals. This can be attributed to the reduction in sources of emission; vehicular traffic, industrial, and other activities. The average reduction in the concentration of NO, NO2, NOX, PM2.5, and O3 between 1st March to 12th May 2020 was found to be 63%, 48%, 48%, 18%, and 23% respectively when compared to the same period in 2019. Similarly, the comparative analysis of pollutant concentrations between pre-lockdown (March 01- March 23) and lockdown (Mar 24-May 12) period, shown a huge reduction in the ambient concentration of air pollutants; 47.3% (NO), 49% (NO2), 49% (NOX), 10% (SO2), 37.7% (PM2.5), and 15.6% (O3), resulting in improved air quality over Bangalore during the COVID-19 lockdown period. It is shown that the strict lockdown resulted in a significant reduction in the pollution levels. Such lockdowns may be useful as emergency intervention strategies to control air pollution in megacities when ambient air quality deteriorates dangerously.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 788
Author(s):  
Rong Feng ◽  
Hongmei Xu ◽  
Zexuan Wang ◽  
Yunxuan Gu ◽  
Zhe Liu ◽  
...  

In the context of the outbreak of coronavirus disease 2019 (COVID-19), strict lockdown policies were implemented to control nonessential human activities in Xi’an, northwest China, which greatly limited the spread of the pandemic and affected air quality. Compared with pre-lockdown, the air quality index and concentrations of PM2.5, PM10, SO2, and CO during the lockdown reduced, but the reductions were not very significant. NO2 levels exhibited the largest decrease (52%) during lockdown, owing to the remarkable decreased motor vehicle emissions. The highest K+ and lowest Ca2+ concentrations in PM2.5 samples could be attributed to the increase in household biomass fuel consumption in suburbs and rural areas around Xi’an and the decrease in human physical activities in Xi’an (e.g., human travel, vehicle emissions, construction activities), respectively, during the lockdown period. Secondary chemical reactions in the atmosphere increased in the lockdown period, as evidenced by the increased O3 level (increased by 160%) and OC/EC ratios in PM2.5 (increased by 26%), compared with pre-lockdown levels. The results, based on a natural experiment in this study, can be used as a reference for studying the formation and source of air pollution in Xi’an and provide evidence for establishing future long-term air pollution control policies.


Author(s):  
Qiwei Yu ◽  
Liqiang Zhang ◽  
Kun Hou ◽  
Jingwen Li ◽  
Suhong Liu ◽  
...  

Exposure to air pollution has been suggested to be associated with an increased risk of women’s health disorders. However, it remains unknown to what extent changes in ambient air pollution affect gynecological cancer. In our case–control study, the logistic regression model was combined with the restricted cubic spline to examine the association of short-term exposure to air pollution with gynecological cancer events using the clinical data of 35,989 women in Beijing from December 2008 to December 2017. We assessed the women’s exposure to air pollutants using the monitor located nearest to each woman’s residence and working places, adjusting for age, occupation, ambient temperature, and ambient humidity. The adjusted odds ratios (ORs) were examined to evaluate gynecologic cancer risk in six time windows (Phase 1–Phase 6) of women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the highest ORs were found in Phase 4 (240 days). Then, the higher adjusted ORs were found associated with the increased concentrations of each pollutant (PM2.5, CO, O3, and SO2) in Phase 4. For instance, the adjusted OR of gynecological cancer risk for a 1.0-mg m−3 increase in CO exposures was 1.010 (95% CI: 0.881–1.139) below 0.8 mg m−3, 1.032 (95% CI: 0.871–1.194) at 0.8–1.0 mg m−3, 1.059 (95% CI: 0.973–1.145) at 1.0–1.4 mg m−3, and 1.120 (95% CI: 0.993–1.246) above 1.4 mg m−3. The ORs calculated in different air pollution levels accessed us to identify the nonlinear association between women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the gynecological cancer risk. This study supports that the gynecologic risks associated with air pollution should be considered in improved public health preventive measures and policymaking to minimize the dangerous effects of air pollution.


2020 ◽  
Vol 9 (8) ◽  
pp. 2351
Author(s):  
Łukasz Kuźma ◽  
Krzysztof Struniawski ◽  
Szymon Pogorzelski ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok—the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number—and causes of death—of Białystok residents in the period 2008–2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02–1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01–1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02–1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 431
Author(s):  
Ayako Yoshino ◽  
Akinori Takami ◽  
Keiichiro Hara ◽  
Chiharu Nishita-Hara ◽  
Masahiko Hayashi ◽  
...  

Transboundary air pollution (TAP) and local air pollution (LAP) influence the air quality of urban areas. Fukuoka, located on the west side of Japan and affected by TAP from the Asian continent, is a unique example for understanding the contribution of LAP and TAP. Gaseous species and particulate matter (PM) were measured for approximately three weeks in Fukuoka in the winter of 2018. We classified two distinctive periods, LAP and TAP, based on wind speed. The classification was supported by variations in the concentration of gaseous species and by backward trajectories. Most air pollutants, including NOx and PM, were high in the LAP period and low in the TAP period. However, ozone was the exception. Therefore, our findings suggest that reducing local emissions is necessary. Ozone was higher in the TAP period, and the variation in ozone concentration was relatively small, indicating that ozone was produced outside of the city and transported to Fukuoka. Thus, air pollutants must also be reduced at a regional scale, including in China.


2016 ◽  
Author(s):  
Dipesh Rupakheti ◽  
Bhupesh Adhikary ◽  
Puppala S. Praveen ◽  
Maheswar Rupakheti ◽  
Shichang Kang ◽  
...  

Abstract. Lumbini, in southern Nepal, is a UNESCO world heritage site of universal value as the birthplace of Buddha. Poor air quality in Lumbini and surrounding regions is a great concern for public health as well as for preservation, protection and promotion of Buddhist heritage and culture. We present here results from measurements of ambient concentrations of key air pollutants (PM, BC, CO, O3) in Lumbini, first of its kind for Lumbini, conducted during an intensive measurement period of three months (April–June 2013) in the pre-monsoon season. The measurements were carried out as a part of the international air pollution measurement campaign; SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley – Atmospheric Brown Clouds). The ranges of hourly average concentrations were: PM10: 10.5–604.0 µg m−3, PM2.5: 6.1–272.2 µg m−3; BC: 0.3–30.0 µg m−3; CO: 125.0–1430.0 ppbv; and O3: 1.0–118.1 ppbv. These levels are comparable to other very heavily polluted sites throughout South Asia. The 24-h average PM2.5 and PM10 concentrations exceeded the WHO guideline very frequently (94 % and 85 % of the sampled period, respectively), which implies significant health risks for the residents and visitors in the region. These air pollutants exhibited clear diurnal cycles with high values in the morning and evening. During the study period, the worst air pollution episodes were mainly due to agro-residue burning and regional forest fires combined with meteorological conditions conducive of pollution transport to Lumbini. Fossil fuel combustion also contributed significantly, accounting for more than half of the ambient BC concentration according to aerosol spectral light absorption coefficients obtained in Lumbini. WRF-STEM, a regional chemical transport model, was used to simulate the meteorology and the concentrations of pollutants. The model was able to reproduce the variation in the pollutant concentrations well; however, estimated values were 1.5 to 5 times lower than the observed concentrations for CO and PM10 respectively. Regionally tagged CO tracers showed the majority of CO came from the upwind region of Ganges valley. The model was also used to examine the chemical composition of the aerosol mixture, indicating that organic carbon was the main constituent of fine mode PM2.5, followed by mineral dust. Given the high pollution level, there is a clear and urgent need for setting up a network of long-term air quality monitoring stations in the greater Lumbini region.


Sign in / Sign up

Export Citation Format

Share Document