scholarly journals A Novel Polishing Process with Rigid-Flexible Composite Structure Plate and Its Performance in Polishing Sapphire Wafer

Author(s):  
Yongchao Xu ◽  
Chen Lin ◽  
Qianting Wang ◽  
Charlesming Zheng ◽  
Youji Zhan ◽  
...  

Abstract A novel flexible polishing process has been developed for sapphire wafer by using a polishing plate with rigid-flexible composite structure to satisfy the demands of excellent surface shape accuracy and high surface topography quality simultaneously. This new polishing plate was fabricated by alternately casting and curing the ring structure of soft and hard unsaturated resins. It is found that the overall stiffness of the polishing plate is improved due to the “hard support frame” of rigid-flexible polishing plate, as well as the ability of removal selectivity of the polishing plate is strengthened. The topography quality and shape accuracy of sapphire wafer polished by presented novel polishing process have been compared with those polished by conventional flexible polishing, respectively. Both experiment and simulation results are shown that the surface roughness and topographical variations of sapphire wafer polished by the novel rigid-flexible composite structure polishing plate have been greatly improved. Comparing with the conventional flexible polishing, the surface shape accuracy of the sapphire wafer polished by the presented novel polishing process can be improved by 54.1%.

2011 ◽  
Vol 403-408 ◽  
pp. 4880-4887
Author(s):  
Sassan Azadi

This research work was devoted to present a novel adaptive controller which uses two negative stable feedbacks with a positive unstable positive feedback. The positive feedback causes the plant to do the break, therefore reaching the desired trajectory with tiny overshoots. However, the two other negative feedback gains controls the plant in two other sides of positive feedback, making the system to be stable, and controlling the steady-state, and transient responses. This controller was performed for PUMA-560 trajectory planning, and a comparison was made with a fuzzy controller. The fuzzy controller parameters were obtained according to the PSO technique. The simulation results shows that the novel adaptive controller, having just three parameters, can perform well, and can be a good substitute for many other controllers for complex systems such as robotic path planning.


2018 ◽  
Vol 102 (6) ◽  
pp. 3129-3140 ◽  
Author(s):  
Defeng Liao ◽  
Ruiqing Xie ◽  
Shijie Zhao ◽  
Lele Ren ◽  
Feihu Zhang ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (63) ◽  
pp. 39666-39671
Author(s):  
Lanling Chu ◽  
Yunzheng Wang ◽  
Yu Zhou ◽  
Xuejun Kang

The novel biosensor substrate material based on a simple BD coating film displayed preferable merits with high surface activity, low cost, easy making, easy using, and extensive application prospect.


Frequenz ◽  
2019 ◽  
Vol 73 (3-4) ◽  
pp. 89-97
Author(s):  
Hai-Feng Zhang ◽  
Yu Ma ◽  
Hao Zhang

Abstract In this paper, a beam-adjustable metasurface (BAM) is realized based on the plasma metamaterial with a dielectric matching layer technique, which is a novel phase compensation method. In order to realize phase compensation from 0° to 360°, the dielectric matching layers are added above the BAM to compensate the phase. The added dielectric layers can have different refractive indices or different thicknesses. Compared with the conventional phase compensation methods, such a method has an universal adaptability, and the phase curve of unit cell does not need to cover 0° ~ 360°. The elements of the BAM can be reconstructed by adjusting the excitation region of the plasma resonance structures to achieve spatial beam scanning. The simulation results show that the proposed BAM has a good performance. It provides that such a novel idea can help to design the novel BAMs to obtain the adjustable and scannable reflective beam in space.


2018 ◽  
Vol 240 ◽  
pp. 05003
Author(s):  
Wojciech Bujalski ◽  
Kamil Futyma ◽  
Jarosław Milewski ◽  
Arkadiusz Szczęśniak

This paper describes the model of the novel concept liquid piston engine, which is designed to convert low-grade waste heat into electricity. The proposed dynamic oriented model is implemented in Aspen Hysys that enables simulations dynamic simulation of various working agents. The simulation results were verified with experimental data obtained from the research installation. The proposed model demonstrated relatively small discrepancies with respect to experimental research, hence it could be used as a tool for research on optimization of an innovative power plant operation, i.e. various working agents, various operating pressures.


2014 ◽  
Vol 607 ◽  
pp. 759-763
Author(s):  
Xiao Bo Liu ◽  
Xiao Dong Yuan ◽  
Xiao Feng Wei ◽  
Wei Ni

This paper deals with the design and analysis of a novel and simple two-translation and one-rotation (3 degrees of freedom, 3-dof) mechanism for alignment. Firstly, degree of freedom of the parallel robot is solved based on the theory of screw. Secondly considering the demand of motion control, we have conducted the analysis on the 3-dof parallel robot, which includes inverse displacement, forward displacement, and simulation based on SolidWorks Motion. The simulation results indicate that the novel 3-dof robot is suitable for performing the required operations.


2014 ◽  
Vol 15 (4) ◽  
pp. 327-333 ◽  
Author(s):  
Mohamad R. Banaei ◽  
M. R. Jannati Oskuee ◽  
F. Mohajel Kazemi

Abstract In this paper, a new advanced topology of stacked multicell inverter is proposed which is generally suitable for high number of steps associated with a low number of switches. Compared with traditional flying capacitor multicell and stacked multicell (SM) inverters, doubling the number of output voltage levels and the RMS value, ameliorating the output voltage frequency spectrum, decreasing the number and rating of components, stored energy and rating of flying capacitors are available with the proposed inverter. These improvements are achieved by adding only four low-frequency switches to the traditional SM inverter’s structure. The suggested topology is simulated using MATLAB/SIMULINK software, and simulation results are presented to indicate well-performance of the novel converter. In addition, the experimental results of proposed topology prototype have been presented to validate its practicability.


2015 ◽  
Vol 772 ◽  
pp. 188-191
Author(s):  
L. Yang ◽  
Fan Yang ◽  
M.B. Xia

This study presents a modeling procedure and dynamic analysis for a novel hydro-pneumatic suspension system, in which the gas chamber has been integrated into the main structures. The modeling of the novel hydro-pneumatic suspension system has been established based on the mass conservation and force balance and the dimension has been obtained through a design optimization approach. The simulation results of the established model have been compared with those obtained through ADAMS, and good match can be observed.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 788 ◽  
Author(s):  
Umut Hanoglu ◽  
Božidar Šarler

In this work, a rolling simulation system for the hot rolling of steel is elaborated. The system is capable of simulating rolling of slabs and blooms, as well as round or square billets, in different symmetric or asymmetric forms in continuous, reversing, or combined rolling. Groove geometries are user-defined and an arbitrary number of rolling stands and distances between them may be used. A slice model assumption is considered, which allows the problem to be efficiently coped with. The related large-deformation thermomechanical problem is solved by the novel meshless Local Radial Basis Function Collocation Method. A compression test is used to compare the simulation results with the Finite Element Method. A user-friendly rolling simulation application has been created for the industrial use based on C# and .NET framework. Results of the simulation, directly taken from the system, are shown for each type of the rolling mill configurations.


2015 ◽  
Vol 36 (4) ◽  
Author(s):  
Kao-Der Chang ◽  
Ruei-Chang Lu ◽  
Yu-Ping Liao ◽  
Keh-Yi Lee

AbstractNew design for surface plasmon resonance (SPR) lens having a sub-wavelength size of spot in the far-field region is proposed in this work. An extra structure of concentrically annular grating fabricated on the top surface of SPR lens is utilized to improve the quality of focusing. Numerical simulation results of the novel type of SPR lenses with different grating structures are presented and compared.


Sign in / Sign up

Export Citation Format

Share Document