scholarly journals Integrin Alpha L as an Immune-Related Biomarker Correlated with the Prognosis and Effect of Immunotherapy in Gliomas

Author(s):  
Jinyang Ma ◽  
Lei Wang ◽  
Youdong Zhou ◽  
Changtao Fu ◽  
Song Huang ◽  
...  

Abstract Backgroud: Discovering effective immune-related biomarkers is vital to ensure efficient immunotherapy for glioma patients. Integrin Alpha L(ITGAL), essential to inflammatory and immune responses, have not been studied in gliomas, systematically. Methods RNA‑seq data and corresponding clinical information of glioma patients were collected from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA), and mRNA data of normal brain tissues were obtained in Genotype-Tissue Expression (GTEx) project. Wilcoxon test was performed to analyze the correlation of ITGAL expression and glioma subtypes. Univariate and multivariate cox proportional hazards regression, receiver operating characteristic (ROC) curves and Kaplan-Meier plots were used to evaluate the prognostic value of ITGAL in glioma. Functional enrichment analyses and immune infiltration analysis were performed to investigate the potential function in mediating the immune response in the tumor microenvironment. Finally, we evaluated the ability of ITGAL for predicting the efficacy of ICB treatment for patients. Results We found the up-regulation of ITGAL may predict a poor prognosis for glioma patients, the expression level increased with the increasing of WHO grade and 1p19q co-deletion status and IDH mutation status. The total methylation level and copy number variation of ITGAL were moderately correlated with its mRNA expression in LGG samples (P < 0.05). Furthermore, ITGAL was correlated with the immunosuppressive tumor microenvironment for the strong correlation with M2 macrophages and Tregs. Finally, GSEA showed the upregulation of ITGAL was mainly involved in the signal recognition and regulation between immune cells, and Toll-like receptor signaling pathway. Conclusion ITGAL is a novel tumor-related and immune-associated biomarker, which could predict the prognosis and effect of ICB therapy for glioma patients.

2021 ◽  
Author(s):  
Yeping Huang ◽  
Shanshan Li ◽  
Cheng Hu ◽  
Hong Zhang ◽  
Xiao Wang

Abstract Background: Recent discoveries have revealed that fibronectin type III domain containing 3B (FNDC3B) acts as an oncogene in various cancers; however, its role in glioma remains unclear. Methods: In this study, we comprehensively investigated the expression, prognostic value, and immune significance of FNDC3B in glioma using several databases and bioinformatics analysis. RNA expression data and clinical information of 529 patients from the Cancer Genome Atlas (TCGA) and 1319 patients from Chinese Glioma Genome Atlas (CGGA) databases were downloaded for further investigation. A nomogram model based on TCGA low-grade glioma (LGG) dataset was constructed to assess the prognosis value of FNDC3B in glioma by plotting calibration, K-M, and receiver operating characteristic (ROC) curves. The predicted nomogram was validated by CGGA cohorts. Differentially expressed genes (DEGs) were detected by the Wilcoxon test based on the TCGA-LGG dataset and the weighted gene co-expression network analysis (WGCNA) was implemented to identify the significant module associated with the expression level of FNDC3B. Furthermore, we investigated the correlation between FNDC3B with cancer immune infiltrates using TISIDB, ESTIMATE, and CIBERSORTx.Results: Higher FNDC3B expression displayed a remarkably worse overall survival and the expression level of FNDC3B was an independent prognostic indicator for patients with glioma. Based on TCGA LGG dataset, a co-expression network was established and the hub genes were identified. FNDC3B expression was positively correlated to the tumor-infiltrating lymphocytes and immune infiltration score, and high FNDC3B expression was accompanied by the increased expression of B7-H3, PD-L1, TIM-3, PD-1, and CTLA-4. Moreover, expression of FNDC3B was significantly associated with infiltrating levels of several types of immune cells and most of their gene markers in glioma. Conclusion: This study demonstrated that FNDC3B may be involved in the occurrence and development of glioma and can be regarded as a promising prognostic and immunotherapeutic biomarker for the treatment of glioma.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9038 ◽  
Author(s):  
Yixin Tian ◽  
Yiquan Ke ◽  
Yanxia Ma

Glioma is one of the most fatal tumors in central nervous system. Previous studies gradually revealed the association between tumor microenvironment and the prognosis of gliomas patients. However, the correlation between tumor-infiltrating immune cell and stromal signatures are unknown. In our study, we obtained gliomas samples from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA). The landscape of tumor infiltrating immune cell subtypes in gliomas was calculated by CIBERSORT. As a result, we found high infiltration of macrophages was correlated with poor outcome (P < 0.05). Then functional enrichment analysis of high/low macrophage-infiltrating groups was performed by GSEA. The results showed three gene sets includes 102 core genes about angiogenesis were detected in high macrophage-infiltrating group. Next, we constructed PPI network and analyzed prognostic value of 102 core genes. We found that five stromal signatures indicated poor prognosis which including HSPG2, FOXF1, KDR, COL3A1, SRPX2 (P < 0.05). Five stromal signatures were adopted to construct a classifier. The classifier showed powerful predictive ability (AUC = 0.748). Patients with a high risk score showed poor survival. Finally, we validated this classifier in TCGA and the result was consistent with CGGA. Our investigation of tumor microenvironment in gliomas may stimulate the new strategy in immunotherapy. Five stromal signature correlated with poor prognosis also provide a strong predator of gliomas patient outcome.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Benjiao Gong ◽  
Yanlei Kao ◽  
Chenglin Zhang ◽  
Fudong Sun ◽  
Zhaohua Gong ◽  
...  

The high mortality of colorectal cancer (CRC) patients and the limitations of conventional tumor-node-metastasis (TNM) stage emphasized the necessity of exploring hub genes closely related to carcinogenesis and prognosis in CRC. The study is aimed at identifying hub genes associated with carcinogenesis and prognosis for CRC. We identified and validated 212 differentially expressed genes (DEGs) from six Gene Expression Omnibus (GEO) datasets and the Cancer Genome Atlas (TCGA) database. We investigated functional enrichment analysis for DEGs. The protein-protein interaction (PPI) network was constructed, and hub modules and genes in CRC carcinogenesis were extracted. A prognostic signature was developed and validated based on Cox proportional hazards regression analysis. The DEGs mainly regulated biological processes covering response to stimulus, metabolic process, and affected molecular functions containing protein binding and catalytic activity. The DEGs played important roles in CRC-related pathways involving in preneoplastic lesions, carcinogenesis, metastasis, and poor prognosis. Hub genes closely related to CRC carcinogenesis were extracted including six genes in model 1 (CXCL1, CXCL3, CXCL8, CXCL11, NMU, and PPBP) and two genes and Metallothioneins (MTs) in model 2 (SLC26A3 and SLC30A10). Among them, CXCL8 was also related to prognosis. An eight-gene signature was proposed comprising AMH, WBSCR28, SFTA2, MYH2, POU4F1, SIX4, PGPEP1L, and PAX5. The study identified hub genes in CRC carcinogenesis and proposed an eight-gene signature with good reproducibility and robustness at the molecular level for CRC, which might provide directive significance for treatment selection and survival prediction.


2021 ◽  
Vol 49 (5) ◽  
pp. 030006052110162
Author(s):  
Yangming Hou ◽  
Xin Wang ◽  
Junwei Wang ◽  
Xuemei Sun ◽  
Xinbo Liu ◽  
...  

Objectives The present study aimed to develop a gene signature based on the ESTIMATE algorithm in hepatocellular carcinoma (HCC) and explore possible cancer promoters. Methods The ESTIMATE and CIBERSORT algorithms were applied to calculate the immune/stromal scores and the proportion of tumor-infiltrating immune cells (TICs) in a cohort of HCC patients. The differentially expressed genes (DEGs) were screened by Cox proportional hazards regression analysis and protein–protein interaction (PPI) network construction. Cyclin B1 (CCNB1) function was verified using experiments. Results The stromal and immune scores were associated with clinicopathological factors and recurrence-free survival (RFS) in HCC patients. In total, 546 DEGs were up-regulated in low score groups, 127 of which were associated with RFS. CCNB1 was regarded as the most predictive factor closely related to prognosis of HCC and could be a cancer promoter. Gene Set Enrichment Analysis (GSEA) and CIBERSORT analyses indicated that CCNB1 levels influenced HCC tumor microenvironment (TME) immune activity. Conclusions The ESTIMATE signature can be used as a prognosis tool in HCC. CCNB1 is a tumor promoter and contributes to TME status conversion.


2021 ◽  
Vol 22 (5) ◽  
pp. 2442
Author(s):  
Qun Wang ◽  
Aurelia Vattai ◽  
Theresa Vilsmaier ◽  
Till Kaltofen ◽  
Alexander Steger ◽  
...  

Cervical cancer is primarily caused by the infection of high-risk human papillomavirus (hrHPV). Moreover, tumor immune microenvironment plays a significant role in the tumorigenesis of cervical cancer. Therefore, it is necessary to comprehensively identify predictive biomarkers from immunogenomics associated with cervical cancer prognosis. The Cancer Genome Atlas (TCGA) public database has stored abundant sequencing or microarray data, and clinical data, offering a feasible and reliable approach for this study. In the present study, gene profile and clinical data were downloaded from TCGA, and the Immunology Database and Analysis Portal (ImmPort) database. Wilcoxon-test was used to compare the difference in gene expression. Univariate analysis was adopted to identify immune-related genes (IRGs) and transcription factors (TFs) correlated with survival. A prognostic prediction model was established by multivariate cox analysis. The regulatory network was constructed and visualized by correlation analysis and Cytoscape, respectively. Gene functional enrichment analysis was performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of 204 differentially expressed IRGs were identified, and 22 of them were significantly associated with the survival of cervical cancer. These 22 IRGs were actively involved in the JAK-STAT pathway. A prognostic model based on 10 IRGs (APOD, TFRC, GRN, CSK, HDAC1, NFATC4, BMP6, IL17RD, IL3RA, and LEPR) performed moderately and steadily in squamous cell carcinoma (SCC) patients with FIGO stage I, regardless of the age and grade. Taken together, a risk score model consisting of 10 novel genes capable of predicting survival in SCC patients was identified. Moreover, the regulatory network of IRGs associated with survival (SIRGs) and their TFs provided potential molecular targets.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 453
Author(s):  
Yu-Han Wang ◽  
Shih-Ching Chang ◽  
Muhamad Ansar ◽  
Chin-Sheng Hung ◽  
Ruo-Kai Lin

Colorectal cancer (CRC) arises from chromosomal instability, resulting from aberrant hypermethylation in tumor suppressor genes. This study identified hypermethylated genes in CRC and investigated how they affect clinical outcomes. Methylation levels of specific genes were analyzed from The Cancer Genome Atlas dataset and 20 breast cancer, 16 esophageal cancer, 33 lung cancer, 15 uterine cancer, 504 CRC, and 9 colon polyp tissues and 102 CRC plasma samples from a Taiwanese cohort. In the Asian cohort, Eps15 homology domain-containing protein 3 (EHD3) had twofold higher methylation in 44.4% of patients with colonic polyps, 37.3% of plasma from CRC patients, and 72.6% of CRC tissues, which was connected to vascular invasion and high microsatellite instability. Furthermore, EHD3 hypermethylation was detected in other gastrointestinal cancers. In the Asian CRC cohort, low EHD3 mRNA expression was found in 45.1% of patients and was connected to lymph node metastasis. Multivariate Cox proportional-hazards survival analysis revealed that hypermethylation in women and low mRNA expression were associated with overall survival. In the Western CRC cohort, EHD3 hypermethylation was also connected to overall survival and lower chemotherapy and antimetabolite response rates. In conclusion, EHD3 hypermethylation contributes to the development of CRC in both Asian and Western populations.


2021 ◽  
Author(s):  
xixun zhang

Abstract Backgroud: Breast cancer (BC) is an aggressive cancer with a high percentage recurrence and metastasis. As one of the most common distant metastasis organ in breast cancer, lung metastasis has a worse prognosis than that of liver and bone. Therefore, it’s important to explore some potential prognostic markers associated with the lung metastasis in breast cancer for preventive treatment. Methods: In our study, transcriptomic data and clinical information of breast cancer patients were downloaded from The Cancer Genome Atlas (TCGA) database. Co-expression modules was built by Weighted gene co-expression network analysis (WGCNA) to find out the royalbule modules which is significantly associated with lung metastasis in breast cancer. Then, co-expression genes were analyzed for functional enrichment. Furthermore, the prognostic value of these genes was assessed by GEPIA Database and Kaplan-Meier Plotter. Results: Results showed that the hub genes, LMNB and CDC20, were up-regulated in breast cancer and indicated worse survival. Therefore, we speculate that these two genes play crucial roles in the process of lung metastasis in breast cancer, and can be used as potential prognostic markers in lung metastasis of breast cancer. Conclusion: Collectively, our study identified two potential key genes in the lung metastasis of breast cancer, which might be applied as the prognostic markers of the precise treatment in breast cancer with lung metastasis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Binghao Zhao ◽  
Yuekun Wang ◽  
Yaning Wang ◽  
Congxin Dai ◽  
Yu Wang ◽  
...  

The immunosuppressive mechanisms of the surrounding microenvironment and distinct immunogenomic features in glioblastoma (GBM) have not been elucidated to date. To fill this gap, useful data were extracted from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), GSE16011, GSE43378, GSE23806, and GSE12907. With the ssGSEA method and the ESTIMATE and CIBERSORT algorithms, four microenvironmental signatures were used to identify glioma microenvironment genes, and the samples were reasonably classified into three immune phenotypes. The molecular and clinical features of these phenotypes were characterized via key gene set expression, tumor mutation burden, fraction of immune cell infiltration, and functional enrichment. Exhausted CD8+ T cell (GET) signature construction with the predictive response to commonly used antitumor drugs and peritumoral edema assisted in further characterizing the immune phenotype features. A total of 2,466 glioma samples with gene expression profiles were enrolled. Tumor purity, ESTIMATE, and immune and stromal scores served as the 4 microenvironment signatures used to classify gliomas into immune-high, immune-middle and immune-low groups, which had distinct immune heterogeneity and clinicopathological characteristics. The immune-H phenotype had higher expression of four immune signatures; however, most checkpoint molecules exhibited poor survival. Enriched pathways among the subtypes were related to immunity. The GET score was similar among the three phenotypes, while immune-L was more sensitive to bortezomib, cisplatin, docetaxel, lapatinib, and rapamycin prescriptions and displayed mild peritumor edema. The three novel immune phenotypes with distinct immunogenetic features could have utility for understanding glioma microenvironment regulation and determining prognosis. These results contribute to classifying glioma subtypes, remodeling the immunosuppressive microenvironment and informing novel cancer immunotherapy in the era of precision immuno-oncology.


2021 ◽  
Author(s):  
Wei Yan ◽  
Dan-dan Wang ◽  
He-da Zhang ◽  
Jinny Huang ◽  
Jun-Chen Hou ◽  
...  

Abstract Background: The structural maintenance of chromosome (SMC) gene family, comprising 6 members, is involved in a wide spectrum of biological functions in many types of human cancers. However, there is little research on the expression profile and prognostic values of SMC genes in hepatocellular carcinoma (HCC). Based on updated public resources and integrative bioinformatics analysis, we tried to determine the value of SMC gene expression in predicting the risk of developing HCC. Methods and materials: The expression data of SMC family members were obtained from The Cancer Genome Atlas (TCGA). The prognostic values of SMC members and clinical features were identified. A gene set enrichment analysis (GSEA) was conducted to explore the mechanism underlying the involvement of SMC members in liver cancer. The associations between tumor immune infiltrating cells (TIICs) and the SMC family members were evaluated using the Tumor Immune Estimation Resource (TIMER) database. Results: Our analysis demonstrated that mRNA downregulation of SMC genes was common alteration in HCC patients. SMC1A, SMC2, SMC3, SMC4, SMC6 were upregulated in HCC. Upregulation of SMC2, SMC3 and SMC4, along with clinical stage, were associated with a poor HCC prognosis based on the results of univariate and multivariate Cox proportional hazards regression analyses. SMC2, SMC3 and SMC4 are also related to tumor purity and immune infiltration levels of HCC. The GSEA results indicated that SMC members participate in multiple biological processes underlying tumorigenesis. Conclusion: This study comprehensively analyzed the expression of SMC gene family members in patients with HCC. This can provide insights for further investigation of the SMC family members as potential targets in HCC and suggest that the use of SMC inhibitor targeting SMC2, SMC3 and SMC4 may be an effective strategy for HCC therapy.


2021 ◽  
Author(s):  
Rongjiong Zheng ◽  
Yaosen SHao ◽  
Mingming Wang ◽  
Yeli Tang ◽  
Meiling Hu

Abstract BackgroundTumor microenvironment has been implicated in the development and progression of cancers. However, the prognostic significance of tumor microenvironment-related genes in kidney renal clear cell carcinoma (KIRC) remains unclear. MethodsIn this study, we obtained and analyzed gene expression profiles from The Cancer Genome Atlas database. Stromal and immune scores were calculated based on the ESTIMATE algorithm. ResultsIn the discovery series of 537 patients, we identified a list of differentially expressed genes which was significantly associated with prognosis in KIRC patients. Protein-protein interaction networks and functional enrichment analysis were both performed, indicating that these identified genes were related to the immune response. ConclusionsThe tumor microenvironment-related genes could serve as the potential biomarkers for KIRC.


Sign in / Sign up

Export Citation Format

Share Document