scholarly journals LncRNA MBNL1-AS1 Represses Proliferation and Cancer Stem-Like Properties of Breast Cancer Through MBNL1-AS1/ZFP36/CENPA Axis

Author(s):  
Yu Ding ◽  
Yingjie Li ◽  
Yunqiang Duan ◽  
Wan Wang ◽  
Wei Zheng ◽  
...  

Abstract Background: Emerging studies suggested the notion that long noncoding RNAs (lncRNAs) were key regulators of cancer progression. In this research, the expression and roles of MBNL1-AS1 were explored in breast cancer (BC).Methods: In the present research, the MBNL1-AS1 expression in breast cancer tissue, as well as in cell line was studied by qRT-PCR assays. The effects of MBNL1-AS1 on proliferation and stemness were evaluated by MTT assays, colony formation assays, orthotopic breast tumor mice models, and sphere formation assays. Flexmap 3D assays were performed to show that MBNL1-AS1 downregulated the Centromere protein A (CENPA) secretion in BC cells. Western blot, RNA pull-down assays, RNA immunoprecipitation (RIP) assays, and Fluorescence in situ hybridization (FISH) were conducted to detect the mechanism.Results: The results revealed that the expression levels of MBNL1-AS1 were downregulated in breast cancer tissues and cell lines. In vitro and in vivo studies demonstrated that overexpression of MBNL1-AS1 markedly inhibited BC cells proliferation and stemness. RNA pull-down assay, RIP assay, western blot assay, and qRT-PCR assay showed that MBNL1-AS1 downregulated CENPA mRNA via directly interacting with Zinc Finger Protein 36 (ZFP36) and subsequently decreased the stability of CENPA mRNA. Restoration assays also confirmed that MBNL1-AS1 suppressed the CENPA-mediated proliferation and stemness in breast cancer cells. Conclusions: We elucidated a new mechanism for how MBNL1-AS1 regulated the phenotype of BC and targeting the MBNL1-AS1/ZFP36/CENPA axis might serve as therapeutic targets for BC patients.

2020 ◽  
pp. 1-10
Author(s):  
Dongdi Wu ◽  
Jia Zhu ◽  
Ying Fu ◽  
Chenqin Li ◽  
Biao Wu

Breast cancer is the most common malignancies worldwide. LncRNA HOX transcript antisense intergenic RNA (HOTAIR) has been shown to promote progression and metastasis of various cancers, including breast cancer. This reasearch aimed to investigate the downstream regulatory pathways of HOTAIR in breast cancer. The levels of HOTAIR and miR-129-5p were examined in breast cancer tissues and SKBR3 and MCF7 cells by quantitative real-time PCR (qRT-PCR). Cell proliferation was examined by Cell Counting Kit-8 (CCK-8) assay. Cell migration and invasion were estimated by transwell assay. Epithelial-to-mesenchymal transition (EMT)-related markers (E-cadherin, N-cadherin and Vimentin) were measured by Western blot assay. The expression of Frizzled 7 (FZD7) was detected using qRT-PCR or Western blot assay. Bioinformatics analysis, luciferase reporter assay or RNA Immunoprecipitation (RIP) assay was performed to explore the molecular mechanism of HOTAIR in breast cancer. Xenograft analysis was utilized to evaluate the tumor growth in vivo. HOTAIR and FZD7 were upregulated, while miR-129-5p was down-regulated in breast cancer tissues and cells. Knockdown of miR-129-5p reversed the effect of HOTAIR knockdown on cell proliferation, migration, invasion and EMT. FZD7 restored the inhibition of miR-129-5p on breast cancer progression. Furthermore, HOTAIR was a sponge of miR-129-5p and FZD7 was a target of miR-129-5p. Knockdown of HOTAIR inhibited the tumor growth in vivo. HOTAIR facilitated breast cancer progression by regulating the miR-129-5p/FZD7 axis, indicating that HOTAIR may be a potential biomarker and therapeutic target for breast cancer.


2020 ◽  
Vol 19 (17) ◽  
pp. 2108-2119
Author(s):  
Yang Jin ◽  
Li Lv ◽  
Shu-Xiang Ning ◽  
Ji-Hong Wang ◽  
Rong Xiao

Background: Laryngeal Squamous Cell Carcinoma (LSCC) is a malignant epithelial tumor with poor prognosis and its incidence rate increased recently. rLj-RGD3, a recombinant protein cloned from the buccal gland of Lampetra japonica, contains three RGD motifs that could bind to integrins on the tumor cells. Methods: MTT assay was used to detect the inhibitory rate of viability. Giemsa’s staining assay was used to observe the morphological changes of cells. Hoechst 33258 and TUNEL staining assay, DNA ladder assay were used to examine the apoptotic. Western blot assay was applied to detect the change of the integrin signal pathway. Wound-healing assay, migration, and invasion assay were used to detect the mobility of Hep2 cells. H&E staining assay was used to show the arrangement of the Hep2 cells in the solid tumor tissues. Results: In the present study, rLj-RGD3 was shown to inhibit the viability of LSCC Hep2 cells in vitro by inducing apoptosis with an IC50 of 1.23µM. Western blot showed that the apoptosis of Hep2 cells induced by rLj- RGD3 was dependent on the integrin-FAK-Akt pathway. Wound healing, transwells, and western blot assays in vitro showed that rLj-RGD3 suppressed the migration and invasion of Hep2 cells by integrin-FAKpaxillin/ PLC pathway which could also affect the cytoskeleton arrangement in Hep2 cells. In in vivo studies, rLj-RGD3 inhibited the growth, tumor volume, and weight, as well as disturbed the tissue structure of the solid tumors in xenograft models of BALB/c nude mice without reducing their body weights. Conclusion: hese results suggested that rLj-RGD3 is an effective and safe suppressor on the growth and metastasis of LSCC Hep2 cells from both in vitro and in vivo experiments. rLj-RGD3 might be expected to become a novel anti-tumor drug to treat LSCC patients in the near future.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 248 ◽  
Author(s):  
Aurore Claude-Taupin ◽  
Leïla Fonderflick ◽  
Thierry Gauthier ◽  
Laura Mansi ◽  
Jean-René Pallandre ◽  
...  

Early detection and targeted treatments have led to a significant decrease in mortality linked to breast cancer (BC), however, important issues need to be addressed in the future. One of them will be to find new triple negative breast cancer (TNBC) therapeutic strategies, since none are currently efficiently targeting this subtype of BC. Since numerous studies have reported the possibility of targeting the autophagy pathway to treat or limit cancer progression, we analyzed the expression of six autophagy genes (ATG9A, ATG9B, BECLIN1, LC3B, NIX and P62/SQSTM1) in breast cancer tissue, and compared their expression with healthy adjacent tissue. In our study, we observed an increase in ATG9A mRNA expression in TNBC samples from our breast cancer cohort. We also showed that this increase of the transcript was confirmed at the protein level on paraffin-embedded tissues. To corroborate these in vivo data, we designed shRNA- and CRISPR/Cas9-driven inhibition of ATG9A expression in the triple negative breast cancer cell line MDA-MB-436, in order to determine its role in the regulation of cancer phenotypes. We found that ATG9A inhibition led to an inhibition of in vitro cancer features, suggesting that ATG9A can be considered as a new marker of TNBC and might be considered in the future as a target to develop new specific TNBC therapies.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Therina Du Toit ◽  
Amanda C Swart

Abstract The metabolism of 11β-hydroxyandrostenedione (11OHA4), a major adrenal C19 steroid, was first characterised in our in vitro prostate models showing that 11OHA4, catalysed by 11βHSDs, 17βHSDs and 5α-reductases, yields potent androgens, 11keto-testosterone (11KT) and 11keto-dihydrotestosterone (11KDHT) in the 11OHA4-pathway [1]. Findings have since led to the analysis of C11-oxy steroids in PCOS, CAH and 21OHD. However, the only circulating C11-oxy steroids included to date have been 11OHA4, 11keto-androstenedione (11KA4), 11β-hydroxytestosterone (11OHT) and 11KT, with 11KT reported as the only potent androgen produced from 11OHA4. We have identified higher levels of 11KDHT compared to 11KT in prostate cancer tissue and benign prostatic hyperplasia tissue and serum, with data suggesting impeded glucuronidation of the C11-oxy androgens [2,3]. The assessment of 11KDHT and the inactivation/conjugation of the C11-oxy steroids in clinical conditions is therefore crucial. We investigated the metabolism of testosterone, 11KT, 11OHT, dihydrotestosterone, 11KDHT and 11OHDHT in JEG-3 placenta choriocarcinoma, MCF-7 BUS and T-47D breast cancer cells, focusing on glucuronidation and sulfation. Steroids were assayed at 1 µM and metabolites were quantified using UPC2-MS/MS. Conjugated steroids were not detected in JEG-3 cells with DHT (0.6 µM remaining) metabolised to 5α-androstane-3α,17β-diol and androsterone (AST), and 11KDHT (0.9 µM remaining) to 11OHAST and 11KAST. 11OHA4 was converted to 11KA4 (12%) and 11KT (2.5%); and 11KT to 11KDHT (14%). In MCF-7 BUS cells, DHT was significantly glucuronidated, whereas 11KDHT was not. 11KAST was the only steroid in the MCF-7 BUS and T-47D cells that was significantly sulfated (p<0.05). In parallel we investigated sulfation in the LNCaP prostate model. Comparing sulfated to glucuronidated levels, only DHT was sulfated, 26%. Analysis showed that C19 steroids were significantly conjugated (glucuronidated + sulfated) compared to the C11-oxy C19 steroids. As there exists an intricate interplay between steroid production and inactivation, impacting pre- and post-receptor activation, efficient conjugation would limit adverse downstream effects. Our data demonstrates the production and impeded conjugation of active C11-oxy C19 steroids, allowing the prolonged presence of androgenic steroids in the cellular microenvironment. Identified for the first time is the 11OHA4-pathway in placenta and breast cancer cells, and the sulfation of 11KAST. Characterising steroidogenic pathways in in vitro models paves the direction for in vivo studies associated with characterising clinical disorders and disease, which the C11-oxy C19 steroids and their intermediates, including inactivated and conjugated end-products, have highlighted. [1] Bloem, et al. JSBMB 2015, 153; [2] Du Toit & Swart. MCE 2018, 461; [3] Du Toit & Swart, JSBMB 2020, 105497.


2018 ◽  
Vol Volume 11 ◽  
pp. 185-191 ◽  
Author(s):  
Sabrina Bimonte ◽  
Antonio Barbieri ◽  
Marco Cascella ◽  
Domenica Rea ◽  
Giuseppe Palma ◽  
...  

2021 ◽  
Author(s):  
Tao Hou ◽  
Weichao Dan ◽  
Tianjie Liu ◽  
Bo Liu ◽  
Yi Wei ◽  
...  

Abstract BackgroundThe mammalian target of Rapamycin (mTOR) pathway serves as a crucial regulator of various biological processes such as cell growth and cancer progression. In bladder cancer, recent discoveries showing the cancer-promoting role of mTOR complex 1 have attracted wide attention. However, the regulation of mTOR signaling in bladder cancer is complicated and the underlying mechanism remains elusive. Here, we report that the deubiquitinating enzyme, ovarian tumor domain-containing protein 5 (OTUD5), can activate the mTOR signaling pathway, promote cancer progression, and show its oncogenic potential in bladder cancer.MethodsThe expression of OTUD5 in bladder cancer was analyzed using bladder cancer tissue microarrays and Western blotting analysis. Meanwhile, to demonstrate the role of OTUD5-RNF186-Sestrin2-mTOR axis in bladder cancer, we have adopted a series of biochemical and molecular biological methods to verify in vivo and in vitro. The methods used included quantitative real time PCR assay; western blot assay; Immunofluorescence staining assay; MTT assay; colony formation assay; Co-immunoprecipitation assay; In vivo ubiquitination assay; Immunohistochemical assay and Bladder Cancer xenograft animal model.ResultsIn our study, we found that OTUD5 deubiquitinated a RING-type E3 ligase, RNF186, and stabilized its function. In addition, the stabilization of RNF186 further led to the degradation of Sestrin2, which is an inhibitor of mTOR signaling pathway. ConclusionTogether, we first proved that OTUD5 can promote bladder cancer progression through the OTUD5-RNF186-Sestrin2-mTOR axis and provided novel insights into the diagnosis and treatment of bladder cancer.


2021 ◽  
pp. 096032712110237
Author(s):  
L Zhou ◽  
S Li ◽  
J Sun

Endometrial cancer (EC) is the fourth most common malignancy in women in developed countries. The prognosis of EC is extremely poor, and it is an important factor that contributes to the death of patients. Therefore, studying EC pathogenesis and therapeutic targets, and exploring effective drugs are the primary tasks to improve the prognosis of EC. In the present study, we aimed to explore the function of ginkgolic acid (GA) in EC cell apoptosis and autophagy through PI3K/Akt/mTOR signal pathway in vitro and in vivo. Firstly, MTT assay and clone formation assay were employed to analyze the Ishikawa and HEC-1-B cell viabilities and proliferation after treatment with GA. The results showed that GA inhibited endometrial cancer cell survival. Flow cytometry assay and western blot assay were applied to examine the apoptosis and apoptosis related protein Bcl-2, Bax, Cleaved caspase-3 expression levels of Ishikawa and HEC-1-B cells after treatment with GA. Next, we applied western blot assay to analyze the autophagy associated proteins LC3I, LC3II, p62 and Beclin-1 in GA treated Ishikawa and HEC-1-B cells. We found that GA promoted apoptosis and induced autophagy of endometrial cancer cells. Meanwhile, western blot assay was also used to determine the expression levels of the PI3K/Akt/mTOR signal pathway related protein and the results revealed that GA inhibited the activity of PI3K/Akt/mTOR pathway. Finally, we found that GA inhibited tumor growth in vivo through immunohistochemistry assay. In conclusion, GA induces apoptosis and autophagy of EC cells via inhibiting PI3K/Akt/mTOR pathway in vivo and vitro.


Author(s):  
Jun-Xian Du ◽  
Yi-Hong Luo ◽  
Si-Jia Zhang ◽  
Biao Wang ◽  
Cong Chen ◽  
...  

Abstract Background Intensive evidence has highlighted the effect of aberrant alternative splicing (AS) events on cancer progression when triggered by dysregulation of the SR protein family. Nonetheless, the underlying mechanism in breast cancer (BRCA) remains elusive. Here we sought to explore the molecular function of SRSF1 and identify the key AS events regulated by SRSF1 in BRCA. Methods We conducted a comprehensive analysis of the expression and clinical correlation of SRSF1 in BRCA based on the TCGA dataset, Metabric database and clinical tissue samples. Functional analysis of SRSF1 in BRCA was conducted in vitro and in vivo. SRSF1-mediated AS events and their binding motifs were identified by RNA-seq, RNA immunoprecipitation-PCR (RIP-PCR) and in vivo crosslinking followed by immunoprecipitation (CLIP), which was further validated by the minigene reporter assay. PTPMT1 exon 3 (E3) AS was identified to partially mediate the oncogenic role of SRSF1 by the P-AKT/C-MYC axis. Finally, the expression and clinical significance of these AS events were validated in clinical samples and using the TCGA database. Results SRSF1 expression was consistently upregulated in BRCA samples, positively associated with tumor grade and the Ki-67 index, and correlated with poor prognosis in a hormone receptor-positive (HR+) cohort, which facilitated proliferation, cell migration and inhibited apoptosis in vitro and in vivo. We identified SRSF1-mediated AS events and discovered the SRSF1 binding motif in the regulation of splice switching of PTPMT1. Furthermore, PTPMT1 splice switching was regulated by SRSF1 by binding directly to its motif in E3 which partially mediated the oncogenic role of SRSF1 by the AKT/C-MYC axis. Additionally, PTPMT1 splice switching was validated in tissue samples of BRCA patients and using the TCGA database. The high-risk group, identified by AS of PTPMT1 and expression of SRSF1, possessed poorer prognosis in the stage I/II TCGA BRCA cohort. Conclusions SRSF1 exerts oncogenic roles in BRCA partially by regulating the AS of PTPMT1, which could be a therapeutic target candidate in BRCA and a prognostic factor in HR+ BRCA patient.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3532
Author(s):  
Ibrahim M. El-Deeb ◽  
Valeria Pittala ◽  
Diab Eltayeb ◽  
Khaled Greish

Triple-negative breast cancer (TNBC) is a heterogeneous subtype of tumors that tests negative for estrogen receptors, progesterone receptors, and excess HER2 protein. The mainstay of treatment remains chemotherapy, but the therapeutic outcome remains inadequate. This paper investigates the potential of a duocarmycin derivative, tafuramycin A (TFA), as a new and more effective chemotherapy agent in TNBC treatment. To this extent, we optimized the chemical synthesis of TFA, and we encapsulated TFA in a micellar system to reduce side effects and increase tumor accumulation. In vitro and in vivo studies suggest that both TFA and SMA–TFA possess high anticancer effects in TNBC models. Finally, the encapsulation of TFA offered a preferential avenue to tumor accumulation by increasing its concentration at the tumor tissues by around four times in comparison with the free drug. Overall, the results provide a new potential strategy useful for TNBC treatment.


Sign in / Sign up

Export Citation Format

Share Document