scholarly journals Comparative Study of the Electrical, Thermal and Mechanical properties of Polypyrrole/CB/and Copper nano powder reinforced Polyester Hybrid Composites

Author(s):  
Sumaira Nosheen ◽  
Syed Hussain Abidi ◽  
Quratulain Syed ◽  
Muhammad Irfan ◽  
Farzana Habib ◽  
...  

Abstract The present research work based on Synthesis and characterization of Polypyrrole coated CB (carbon black), Copper, and VGCNF (vapor grown carbon nanofibers) hybrid composite. Two approaches were used comprising in situ polymerization of Polypyrrole/CB composite. The resulting composite was dispersed in with the measured quantity of Cu nano Powder and VGCNF in polyester at very high rate of dispersion to produced hybrid composite. The resulting composites were characterized by FTIR, electrical conductivity, mechanical properties, thermal analysis and UV visible spectroscopy.

2020 ◽  
Vol 6 (2) ◽  
pp. 686-688
Author(s):  
Phalak Mrunalini ◽  
Rajendra Waghulade ◽  
Yogesh Toda

This work reports synthesize of polypyrrole nano powder by chemical in-situ polymerization of pyrrole in aqueous solution and ammonium persulfate solution which acts as oxidant. It is characterized by X-ray diffraction (XRD), Fourier infra-red spectroscopy (FTIR) and scanning electron microscopy (SEM). The XRD spectrum reveals that the materials are amorphous in nature. FTIR analysis confirms that all peaks are the main characteristic of PPy. SEM analysis showed that the powder has a uniform granular morphology and the size varies from ∼500 nm to 1 μm. The micrograph of polypyrrole reveals the presence of globular particles. The formed particles are irregular in nature. The results show that the fibers are chemically formed as spherical nanostructures.


Author(s):  
SS Rana ◽  
MK Gupta

The present study aims to fabricate the epoxy-based bionanocomposites reinforced with hemp nanocellulose and the evaluation of their mechanical, thermal and dynamic mechanical properties. Nanocellulose from hemp fibres was isolated via the chemo-mechanical method and its bionanocomposites were prepared using the in situ polymerization method. Although many researchers have reported studies on the preparation and characterization of bionanocomposites however, studies on the mechanical, thermal, and dynamic mechanical properties of epoxy-based bionanocomposites reinforced with hemp nanocellulose are still unreported. The mechanical properties (i.e. tensile, flexural, hardness, and impact) and dynamic mechanical properties (i.e. glass transition temperature, damping behaviour, storage, and loss modulus) of the developed bionanocomposites were investigated. Further, the crystalline behaviour and thermal stability were also studied using the X-ray diffraction and thermogravimetric analysis techniques, respectively. The results revealed that an addition of nanocellulose considerably improved the mechanical, thermal, and viscoelastic properties of the bionanocomposites. As much as 52.17%, 48.17%, 89.08%, and 15.67% improvements in the tensile strength, flexural strength, impact strength, and hardness, respectively, for the 2 wt.% nanocellulose composites were found over the epoxy matrix.


2014 ◽  
Vol 1015 ◽  
pp. 381-384
Author(s):  
Li Liu ◽  
Li Hai Cai ◽  
Dan Liu ◽  
Jun Xu ◽  
Bao Hua Guo

The poly (butylene succinate) (PBS) and 3 wt% attapulgite (ATP) reinforced PBS/ATP nanocomposites with 1,6-hexanediol were fabricated using an in situ polymerization method. The crystallization behaviors indicated that ATP had effectively acted as nucleating agent, resulting in the enhancement on the crystallization temperature. The SEM results showed a superior interfacial linkage between ATP and PBS. Also, ATP could disperse as a single fiber and embed in the polymer matrix, which resulted in the improved mechanical properties.


2013 ◽  
Vol 750-752 ◽  
pp. 7-10
Author(s):  
Kou An Hao ◽  
Zhen Qing Wang ◽  
Li Min Zhou

Fiber impregnation has been the main obstacle for thermoplastic matrix with high viscosity. This problem could be surmounted by adapting low viscous polymeric precursors Woven basalt fabric reinforced poly (butylenes terephthalate) composites were produced via in-situ polymerization at T=210°C. Before polymerization, catalyst was introduced to the reinforcement surface with different concentration. DSC is used to determine the polymerization and crystallization. SEM is used to detect whether the catalyst existed on surface. Both flexural and short-beam shear test are employed to study the corresponding mechanical properties.


2017 ◽  
Vol 37 (6) ◽  
pp. 547-557 ◽  
Author(s):  
Sekaran Sathees Kumar ◽  
Ganesan Kanagaraj

Abstract In this paper, the combined effect of different weight percentages of silicon carbide (SiC) and graphite (Gr) reinforcement on the mechanical properties of polyamide (PA6) composite is studied. Test specimens of pure PA6, 85 wt% PA6+10 wt% SiC+5 wt% Gr and 85 wt% PA6+5 wt% SiC+10 wt% Gr are prepared using an injection molding machine. The tensile, impact, hardness, morphology and thermal properties of the injection molded composites were investigated. The obtained results showed that mechanical properties, such as tensile and impact strength and modulus of the PA6 composites, were significantly higher than the pure PA6, and hybridization with silicon carbide and graphite further enhanced the performance properties, as well as the thermal resistance of the composites. The tensile fracture morphology and the characterization of PA6 polymer composites were observed by scanning electron microscope (SEM) and Fourier transform infrared spectroscopic methods. SEM observation of the fracture surfaces showed the fine dispersion of SiC and Gr for strong interfacial adhesion between fibers and matrix. The individual and combined reinforcing effects of silicon carbide and graphite on the mechanical properties of PA6 hybrid composites were compared and interpreted in this study. Improved mechanical properties were observed by the addition of small amount of SiC and Gr concurrently reinforced with the pure PA6. Finally, thermogravimetric analysis showed that the heat resistance of the composites tended to increase with increasing silicon carbide and graphite content simultaneously.


2020 ◽  
Author(s):  
Rui Miguel ◽  
José Lucas ◽  
Sónia Melo ◽  
Madalena Pereira ◽  
Clara Fernandes ◽  
...  

This research work aims to study the influence of the fabrics in the wear performance of clothing. For this, an experimental work was developed with two fabric samples having the same weight/m2, one single and another double, and a jacket prototype. Through a comparative analysis of the mechanical properties, very interesting results was obtained in the evaluation and characterization of the two fabrics performance in designing the same jacket, namely the drape and the corresponded aesthetic fabrics behaviours during wear. The structural characteristics and mechanical properties of each fabric were introduced into Marvelous Designer Version 8 software to simulate the virtual draping of fabrics in a skirt. The analysis of the drape profile of each fabric given by the software and the drape of the real fabrics evaluated in laboratory indicates, coherently, that the double fabric falls less than the single, but in a more harmonious way, what evidence the close links between technology and design of fashion products. Keywords: Fabrics design, Fabrics mechanical properties, Clothing drape, Real and simulated drape


Sign in / Sign up

Export Citation Format

Share Document