scholarly journals Ti(IV)-exchanged nano-ZIF-8 and nano-ZIF-67 for Enhanced Photocatalytic Oxidation of Hydroquinone

Author(s):  
Lehlohonolo E. Mphuthi ◽  
Mametsi R. Maseme ◽  
Ernie H.G. Langner

Abstract The metal centres of nano-ZIF-8(Zn) and nano-ZIF-67(Co) were partially exchanged with titanium centres to form bimetallic nZIF-8(Zn/Ti) (52% Ti4+) and nZIF-67(Co/Ti) (38% Ti4+) respectively, for enhanced photocatalytic performance. A morphological and structural analysis by SEM, EDS-Mapping and PXRD showed that the particle size, distribution, and the structural integrity of the Sodalite frameworks of the parent ZIFs were retained during the exchange process to form the new bimetallic Ti-ZIFs. FTIR confirmed that no additional chemical bonds were formed during the process. XPS binding energies confirmed the preservation of the Zn(II), Co(II) and Ti(IV) oxidation states, as well as the Ti-content, consistent with ICP-OES and EDS measurements. The Ti-exchanged ZIFs showed higher activity during the photocatalytic oxidation of hydroquinone in comparison with their parent ZIFs. Their kinetic rates were nearly five times faster than those of the parent ZIFs, with the first-order rate constants k = 0.189 min-1 for nZIF-8(Zn/Ti) and k = 0.139 min-1 for nZIF-67(Co/Ti). These catalysts are efficient, stable, and reusable for three photocatalytic cycles without a significant loss of catalytic activity.

Author(s):  
N. C. Pyper

The periodic table provides a deep unifying principle for understanding chemical behaviour by relating the properties of different elements. For those belonging to the fifth and earlier rows, the observations concerning these properties and their interrelationships acquired a sound theoretical basis by the understanding of electronic behaviour provided by non-relativistic quantum mechanics. However, for elements of high nuclear charge, such as occur in the sixth and higher rows of the periodic table, the systematic behaviour explained by non-relativistic quantum mechanics begins to fail. These problems are resolved by realizing that relativistic quantum mechanics is required in heavy elements where electrons velocities can reach significant fractions of the velocity of light. An essentially non-mathematical description of relativistic quantum mechanics explains how relativity modifies valence electron behaviour in heavy elements. The direct relativistic effect, arising from the relativistic increase of the electron mass with velocity, contracts orbitals of low angular momentum, increasing their binding energies. The indirect relativistic effect causes valence orbitals of high angular momentum to be more effectively screened as a result of the relativistic contraction of the core orbitals. In the alkali and alkaline earths, the s orbital contractions reverse the chemical trends on descending these groups, with heavy elements becoming less reactive. For valence d and f electrons, the indirect relativistic effect enhances the reductions in their binding energies on descending the periodic table. The d electrons in the heavier coinage metals thus become more chemically active, which causes these elements to exhibit higher oxidation states. The indirect effect on d orbitals causes the chemistries of the sixth-row transition elements to differ significantly from the very similar behaviours of the fourth and fifth-row transition series. The relativistic destabilization of f orbitals causes lanthanides to be chemically similar, forming mainly ionic compounds in oxidation state three, while allowing the earlier actinides to show a richer range of chemical behaviour with several higher oxidation states. For the 7p series of elements, relativity divides the non-relativistic p shell of three degenerate orbitals into one of much lower energy with the energies of the remaining two being substantially increased. These orbitals have angular shapes and spin distributions so different from those of the non-relativistic ones that the ability of the 7p elements to form covalent bonds is greatly inhibited. This article is part of the theme issue ‘Mendeleev and the periodic table’.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 53 ◽  
Author(s):  
Yuanyuan Li ◽  
Xiaofang Tian ◽  
Yaoqiong Wang ◽  
Qimei Yang ◽  
Yue Diao ◽  
...  

Using solar energy to remove antibiotics from aqueous environments via photocatalysis is highly desirable. In this work, a novel type-II heterojunction photocatalyst, MgSn(OH)6/SnO2, was successfully prepared via a facile one-pot in situ hydrothermal method at 220 °C for 24 h. The obtained heterojunctions were characterized via powder X-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, and ultraviolet-visible diffuse reflectance spectroscopy. The photocatalytic performance was evaluated for photodegradation of tetracycline solution under ultraviolet irradiation. The initial concentration of tetracycline solution was set to be 20 mg/L. The prepared heterojunctions exhibited superior photocatalytic activity compared with the parent MgSn(OH)6 and SnO2 compounds. Among them, the obtained MgSn(OH)6/SnO2 heterojunction with MgCl2·6H2O:SnCl4·5H2O = 4:5.2 (mmol) displayed the highest photocatalytic performance and the photodegradation efficiency conversion of 91% could be reached after 60 min under ultraviolet irradiation. The prepared heterojunction maintained its performance after four successive cycles of use. Active species trapping experiments demonstrated that holes were the dominant active species. Hydroxyl radicals and superoxide ions had minor effects on the photocatalytic oxidation of tetracycline. Photoelectrochemical measurements were used to investigate the photocatalytic mechanism. The enhancement of photocatalytic activity could be assigned to the formation of a type-II junction photocatalytic system, which was beneficial for efficient transfer and separation of photogenerated electrons and holes. This research provides an in situ growth strategy for the design of highly efficient photocatalysts for environmental restoration.


2001 ◽  
Vol 44 (5) ◽  
pp. 205-210 ◽  
Author(s):  
D. Gonenç ◽  
M. Bekbolet

Photolytic and photocatalytic interactions of hypochlorite ion and humic acid are investigated under various conditions. Humic acid oxidation by aqueous chlorine under dark conditions are expressed in terms of first order reaction kinetics. Upon irradiation (300 nm < λ < 400 nm), photolysis of aqueous chlorine affect the removal efficiency of humic acid via oxidation. TiO2 sensitised photocatalytic oxidation conditions reveal an increase in the TOC removal rate of humic acid in the presence of aqueous chlorine. Under the specified conditions, increasing the photocatalyst loading up to 1.0 mg/mL markedly increase the TOC removal rate.


1994 ◽  
Vol 116 (1) ◽  
pp. 8-13 ◽  
Author(s):  
P. Wyness ◽  
J. F. Klausner ◽  
D. Y. Goswami ◽  
K. S. Schanze

A solar photocatalytic oxidation facility has been fabricated in which the destruction of 4-chlorophenol (4CP) is tested in three adjacent shallow pond reactors. Each of the reactors has depths of 5.1, 10.2, and 15.3 cm (2, 4, and 6 in.), respectively. It is found that 4CP is successfully oxidized with the photocatalyst, titanium dioxide (TiO2), suspended in a slurry or adhered to a fiberglass mesh. The pond reactors, however, perform better with the slurry. It has also been found that the first-order rate constant for oxidation of 4CP increases with decreasing initial concentration. For the same incident ultraviolet (UV) intensity, catalyst loading, and initial solute concentration, the oxidation rate of 4CP is invariant provided the aperture to volume ratio is fixed. It has been determined that the 4CP solution contains sufficient dissolved oxygen to support the photocatalytic oxidation process. Direct evidence is provided to demonstrate that the utilization of photons in the photocatalytic process becomes less efficient as the number of incident photons on the catalyst increases.


2012 ◽  
Vol 580 ◽  
pp. 535-538 ◽  
Author(s):  
Bin Yu ◽  
Hai Feng Chen ◽  
Ting Yan

WO3 nanocrystals have been successfully synthesized via an ion induced auxiliary hydrothermal method. The experiment products were characterized by powder X-ray diffraction (XRD) and the Photocatalytic oxidation performance of products were characterized by using the photocatalytic oxidation of methyl orange under the condition of hydrogen peroxide. The optimal amount of catalyst required for catalytic oxidation experiments and the concentration of methyl orange (MO) were determined. The experimental results indicated that with he enhancement of metallicity in alkali main group, the photocatalytic activity of the WO3 induced by alkali metal cation increased; The SO42- has higher induce catalytic activity than Cl- when the type and quantity of cation are the same; however, the ion induction on the impact of surface area is quite different, and it founded that they comply with this regular pattern, that is Na+> K+> Li+ and SO42-> Cl-.


2007 ◽  
Vol 2007 ◽  
pp. 1-4
Author(s):  
Anna Kachina ◽  
Sergei Preis ◽  
Juha Kallas

Gas-phase photocatalytic oxidation (PCO) and thermal catalytic oxidation (TCO) of dimethylamine (DMA) on titanium dioxide was studied in a continuous flow simple tubular reactor. Volatile PCO products of DMA included ammonia, formamide, carbon dioxide, and water. Ammonia was further oxidized in minor amounts to nitrous oxide and nitrogen dioxide. Effective at 573 K, TCO resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide, and water. The PCO kinetic data fit well to the monomolecular Langmuir-Hinshelwood model, whereas TCO kinetic behaviour matched the first-order process. No deactivation of the photocatalyst during the multiple long-run experiments was observed.


2018 ◽  
Vol 21 (2) ◽  
pp. 98-105 ◽  

<p>Three different advanced oxidation processes (AOPs) were applied to investigate the removal of emerging contaminants (ECs) i.e. sulfamethoxazole (SMX), diclofenac (DCF) and carbamazepine (CBZ) in synthetically prepared solutions. The degradation of these substances was carried out by ozonation, sonolysis and photocatalytic oxidation, as well as by different combinations of these processes. The objectives of this work were to evaluate the removal efficiency in each AOP and to assess the performance variation of sonolysis in combination with other AOPs. The best performances were achieved by sonocatalysis, which resulted in the removal of the selected pharmaceuticals in the range between 37% and 47%. Under similar experimental conditions, the removal of the selected ECs by single compounds by ozonation was slightly lower than the removal of respective compounds in the mixture. Moreover, pseudo first-order removal rate constants of photocatalytic mineralization were determined as 9.33×10-2, 4.90×10-3, 1.06×10-2 min-1 for SMX, DCF and CBZ, respectively.</p>


2020 ◽  
Vol 19 (05) ◽  
pp. 1950037
Author(s):  
Tao Yu ◽  
Hang Guo ◽  
Xiangyu Wang ◽  
Baojun Li ◽  
Xianji Guo

Using trirutile-structure layered tantalum–tungsten acid as the layered host, [Formula: see text]-propylamin as the pre-swelling agent and aqueous solution of [Fe3(CH3COO)7(OH)(H2O)]NO3 as the pillaring solution, oligomeric polyhydroxyacetato-Fe(III) species-intercalated layered HTaWO6 was synthesized by a stepwise ion-exchange way at room temperature. Upon calcining at 673[Formula: see text]K in air atmosphere, iron oxide-pillared layered HTaWO6with nanoscale interlayer distance (denoted as Fe2O3-HTaWO[Formula: see text] was obtained. A series of Fe2O3-HTaWO6 samples with various Fe contents were prepared by using different volume of Fe(III)-pillaring solution. The layered intermediates obtained at each stage of the ions-exchange process and the final layered products were characterized by powder XRD, FT-IR, DR UV-Vis and SEM techniques. The photocatalytic performance of the Fe2O3-pillared layered HTaWO6 samples for degradation of rhodamine B was investigated. Compared with un-pillared layered HTaWO6, the Fe2O3-pillared layered HTaWO6 exhibited a significantly-improved photo-absorption performance and an enhanced photocatalytic activity. The Fe2O3-HTaWO6 sample with 5.8% (wt) iron showed the best catalytic performance in the photodegradation reaction of rhodamine B.


Sign in / Sign up

Export Citation Format

Share Document