Performance of Nonconcentrating Solar Photocatalytic Oxidation Reactors: Part II—Shallow Pond Configuration

1994 ◽  
Vol 116 (1) ◽  
pp. 8-13 ◽  
Author(s):  
P. Wyness ◽  
J. F. Klausner ◽  
D. Y. Goswami ◽  
K. S. Schanze

A solar photocatalytic oxidation facility has been fabricated in which the destruction of 4-chlorophenol (4CP) is tested in three adjacent shallow pond reactors. Each of the reactors has depths of 5.1, 10.2, and 15.3 cm (2, 4, and 6 in.), respectively. It is found that 4CP is successfully oxidized with the photocatalyst, titanium dioxide (TiO2), suspended in a slurry or adhered to a fiberglass mesh. The pond reactors, however, perform better with the slurry. It has also been found that the first-order rate constant for oxidation of 4CP increases with decreasing initial concentration. For the same incident ultraviolet (UV) intensity, catalyst loading, and initial solute concentration, the oxidation rate of 4CP is invariant provided the aperture to volume ratio is fixed. It has been determined that the 4CP solution contains sufficient dissolved oxygen to support the photocatalytic oxidation process. Direct evidence is provided to demonstrate that the utilization of photons in the photocatalytic process becomes less efficient as the number of incident photons on the catalyst increases.

2014 ◽  
Vol 12 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Cécile Raillard ◽  
Audrey Maudhuit ◽  
Valérie Héquet ◽  
Laurence Le Coq ◽  
Jean Sablayrolles ◽  
...  

Abstract The photocatalytic degradation of three common indoor VOCs – acetone, toluene and heptane – is investigated in a dynamic photocatalytic oxidation loop using Box–Behnken designs of experiments. Thanks to the experimental results and the establishment of a kinetic rate law based on a simplified mechanism, a predictive model for the VOC degradation involving independent factors is developed. The parameters under investigation are initial concentration, light intensity and air velocity through the photocatalytic medium. The obtained model fits properly the experimental curves in the range of concentration, light intensity and air flow studied.


2010 ◽  
Vol 113-116 ◽  
pp. 87-90
Author(s):  
Qing Jie Xie

The microwave irradiation (MI) was found that it had significantly treatment efficiency for pollutants removal. It was developed to treat the alage in this paper. The granular activated carbon (GAC) was used as catalyst. The effect of the acting time, MI power, GAC amount and the initial concentration on alage removal were studied. The results showed: with the increasing of the acting time, MI power, GAC amount the alage removal rate were increased, but the effect of the initial concentration to alage removal was opposite; the optimum value of acting time, MI power and GAC amount were 5min, 450W and 3g respectively with the alage removal efficiency reached up to 100%. It also showed that with the alage removed under the MI the COD, SS were removed too. It was discovered that the oxidation process was basically in conformity with the first-order dynamic reaction(ln(C/C0)=-0.9371t+0.6744(R2=0.9472)).


2011 ◽  
Vol 255-260 ◽  
pp. 2904-2908
Author(s):  
Li Jie Huang ◽  
Ting Xu ◽  
Shuang Fei Wang

Experiments were conducted to investigate the decolorization of methyl orange simulated wastewater in order to assess the effectiveness and feasibility of ultrasound(US) enhanced high-purity chlorine dioxide(ClO2) oxidation process. The results showed that in ClO2/US system the decolorization rate of methyl orange was up to 96%, which was increased by 8% as compared to ClO2treatment alone. The decolorization of methyl orange with/without ultrasonic irradiation follows apparent pseudo-first-order reaction kinetics. The apparent pseudo-first-order rate constant kappwas 0.19min-1in the ClO2/US system, which was a little higher than 0.13min-1of rate constant achieved in ClO2treatment alone. It shows that ClO2/US system can be an effective technology for the decolorization of azo dyes in wastewater.


2021 ◽  
Vol 11 (24) ◽  
pp. 11664
Author(s):  
Liliana Bobirică ◽  
Constantin Bobirică ◽  
Giovanina Iuliana Lupu ◽  
Cristina Orbeci

The influence of some operating parameters of an UV photocatalytic reactor with TiO2/stainless steel photocatalytic membrane on the photocatalytic oxidation of 2,4-dichlorophenol from aqueous solutions was studied in this paper. It was shown that the pH of the working solution substantially influences the photocatalytic degradation of the organic substrate, with the degradation efficiency increasing with decreasing the pH of the working solution by a maximum corresponding to pH 3. The rate constant of the photocatalytic oxidation process is about twice as high at pH 3 comparative with pH 7 for the same initial concentration of the organic substrate. The molar ratio of hydrogen peroxide/organic substrate also influences the photocatalytic oxidation process of the organic substrate. The results obtained in this paper highlight the fact that a stoichiometric molar ratio is favorable for the photocatalytic degradation of 2,4-dichlorophenol. It has also been shown that the initial concentration of the organic substrate influences the rate of photocatalytic degradation. It appears that the rate of photocatalytic degradation decreases with the increasing of initial concentration of 2,4-dichlorophenol.


2014 ◽  
Vol 28 (1) ◽  
pp. 41-44
Author(s):  
MA Islam ◽  
M Rakib Uddin ◽  
MSA Amin ◽  
MI Haque ◽  
MSR Molla

The degradation of Methylene Blue (MB) in aqueous solution has been investigated in a photocatalytic reactor under UV radiation and in presence of zinc oxide (ZnO). The photodegradation kinetics follows pseudo-first order reaction. The effect of process parameters such as catalyst loading and initial concentration of MB on the degradation is investigated. The results show that the degradation rate is affected insignificantly by the increases in the catalyst dosage. Batch test, however, shows that with an increase in the initial concentration the apparent rate constant gradually decreases. The first results with a continuous reactor with a diluted feed solution show inspiring dye removal. DOI: http://dx.doi.org/10.3329/jce.v28i1.18110 Journal of Chemical Engineering, Vol. 28, No. 1, December 2013: 41-44


1986 ◽  
Vol 239 (1) ◽  
pp. 221-224 ◽  
Author(s):  
I E Crompton ◽  
S G Waley

A convenient and accurate procedure for determining the kinetic parameter Vmax./Km is described. This avoids the error in the usual method of taking the observed first-order rate constant of an enzymic reaction at low substrate concentration as Vmax./Km. A series of reactions is used in which the initial concentration of substrate is below Km (e.g. from 5% to 50% of Km). Measurements are taken over the same extent of reaction (e.g. 70%) for each member of the series, and treated as if the kinetics were truly first-order. The reciprocal of the observed first-order rate constant is then plotted against the initial concentration of substrate: the reciprocal of the ordinate intercept is Vmax./Km. The procedure, as well as being applicable to simple reactions, is shown to be valid when there is competitive inhibition by the product, or when the reaction is reversible, or when there is competitive or mixed inhibition. The hydrolysis of cephalosporin C by a beta-lactamase from Pseudomonas aeruginosa is used to illustrate the method.


2012 ◽  
Author(s):  
Hasril Azuan Abdullah Hashim ◽  
Abdul Rahman Mohamed ◽  
Keat Teong Lee

Perawatan air sisa semakin mendapat perhatian kebelakangan ini, sehingga menjurus kepada penemuan fotopemangkinan, satu kaedah alternatif perawatan air sisa yang berpotensi. Sehingga kini, banyak penyelidikan yang berkaitan dengan pemusnahan bahan pencemar organik tunggal telah dijalankan. Walau bagaimanapun, aplikasinya terhadap pendetoksifikasi sampel campuran bahan pencemar dengan tahap Jumlah Karbon Organik yang tinggi tidak dikaji secara menyeluruh. Walaupun terdapat banyak kaedah perawatan pada masa kini, kebanyakannya tidak memusnahkan bahan pencemar secara lengkap, tetapi hanya menyebabkan perubahan fasa atau pemusnahan bahan pencemar secara separa sahaja. Berbeza daripada kaedah perawatan yang lain, proses fotopemangkinan ialah teknologi bersih yang hanya menggunakan tenaga suria, air dan mangkin yang boleh digunakan semula bagi memusnahkan toksin atau bahan pencemar dalam air. Dalam proses fotopemangkinan, fotomangkin semikonduktor boleh diaktifkan hanya dengan menggunakan sinaran ultra lembayung (UV) daripada radiasi cahaya matahari. Fotomangkin yang telah diaktifkan akan menghasilkan radikal hidroksil yang berkebolehan untuk mendegradasikan bahan cemar. Dalam kajian ini, fotomangkin yang digunakan ialah titanium dioksida (TiO2) dan tartrazin dipilih sebagai bahan cemar. Tartrazin ialah sejenis pewarna yang banyak digunakan dalam industri makanan dan mudah larut dalam air. Pewarna sintetik ini boleh mengakibatkan kanser pada kepekatan yang tinggi. Uji kaji fotopemangkinan dijalankan dengan mengubah jumlah mangkin yang digunakan (0–1.5 g/L), kepekatan awal larutan pewarna (5–35 ppm), dan kadar aliran larutan pewarna (1.0–1.5 L/min). Larutan pewarna didedahkan kepada sinaran matahari selama dua jam. Keputusan uji kaji menunjukkan bahawa peratus degradasi pewarna yang tinggi boleh dicapai dengan menggunakan kombinasi sinaran cahaya dan TiO2. Jumlah mangkin optimum yang digunakan untuk proses degradasi pewarna ini ialah 1.0 g/L. Kepekatan asal pewarna tartrazin dan kadar aliran larutan tartrazin didapati mempengaruhi peratus degradasi pewarna. Kepekatan asal tartrazin yang lebih tinggi mengakibatkan kecekapan proses degradasi menurun, manakala kadar aliran larutan tartrazin yang lebih tinggi mengakibatkan kecekapan proses degradasi meningkat. Kata kunci: Foto-pemangkinan; mangkin TiO; tartrazin; pendetoksifikasi suria As wastewater treatments become more important nowadays, photocatalysis, an alternative wastewater treatment method, shows a promising potential. By now, many studies on the photocatalytic destruction of single organic contaminants have been carried out However, its application to the detoxification of samples of contaminants mixtures with high Total Organic Carbon levels has not been thoroughly investigated. Although presently many treatment methods are being used, most of them do not completely destroy the pollutants but only offer phase transfer or partial degradation of the pollutants. On the other hand, solar photocatalytic process is an exciting clean technology that uses only sunlight, water, and a reusable catalyst to remove toxins or pollutants from water. In a photocatalytic process, a semiconductor photocatalyst is activated with ultraviolet (UV) irradiation from the sun. The activated photocatalyst promotes the formation of hydroxyl radicals, which in turn completely degrade the pollutants. In this study, the photocatalyst used was titanium dioxide (TiO2) and tartrazine was chosen as the pollutant. Tartrazine is one of the popular water soluble dyes used in food coloring industries but it is carcinogenic at high concentration. The photocatalytic experiments were conducted with varying catalyst loading (0-1.5 g/L), initial concentration (5-35 ppm), and flowrate of tartrazine solution (1.0-1.5 L/min). The dye solution was exposed to sunlight for about two hours. The experimental results showed that a considerable increase in the degradation efficiency of the tartrazine-compound could be obtained by a combination of TiO2 and solar light. The optimum catalyst weight loading for the degradation of tartrazine dye was found to be 1.0 g/L. The initial concentration of the tartrazine dye and flowrate of tartrazine solution were found to effect the degradation efficiency of the dye. Higher initial concentration resulted in lower degradation efficiencies, while higher tartrazine solution flowrate resulted in higher degradation efficiency. Key words: Photocatalytic; solar detoxification; tartrazine; TiO2 catalyst


1983 ◽  
Vol 61 (8) ◽  
pp. 1712-1718 ◽  
Author(s):  
Donald Barton ◽  
Michael Hodgett ◽  
Paul Skirving ◽  
Michael Whelton ◽  
Keith Winter ◽  
...  

The rate of nitrogen formation during the thermal decomposition of azobenzene in static and stirred-flow systems was measured over the temperature range of 368.9 °C to 437.4 °C. The first order rate constant was found to be given by the expression[Formula: see text]A consideration of the equilibrium constant between cis-azobenzene and trans-azobenzenc, and the rate of attainment of equilibrium, leads to the conclusion that a small concentration of cis-azobenzene is always present, at equilibrium with the trans isomer. Since the cis isomer is likely to be more reactive than the trans isomer the rate constant cannot be ascribed to the trans isomer alone. No effect of variation of surface-to-volume ratio could be detected. Some preliminary experiments in which toluene and ethylene were employed as additives indicated that these did not affect the rate of formation of nitrogen. Nevertheless, because of a certain amount of scatter in the results, a small effect could not be excluded. There were at least nine products, in addition to nitrogen.


2018 ◽  
Vol 142 ◽  
pp. 01003
Author(s):  
Mingguo Lin ◽  
Qiyuan Gu ◽  
Xinglan Cui ◽  
Xingyu Liu

Cyanide containing wastewater that discharged from gold mining process creates environmental problems due to the toxicity of cyanide. As one of the promising advanced oxidation process, catalytic oxidation with ozone is considered to be effective on the purification of cyanide. Diatomite, a natural mineral, was used as catalyst in this study. The effect of O3 dosage, salinity, initial cyanide concentration and initial pH condition were investigated. It was observed that the removal rate of cyanide was much higher in the catalytic oxidation with ozone process than the one in zone alone process. Alkaline condition was especially favorable for cyanide in catalytic oxidation with ozone. The ozone and catalytic oxidation with ozone were simulated by pseudo-first-order kinetics model. The apparent first-order rate constant contribution of the diatomite catalyst was 0.0757 min-1, and the contribution percentage was 65.77%.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 167-178 ◽  
Author(s):  
Xin Tong ◽  
Jiao Li ◽  
Jun Ma ◽  
Xiaoquan Chen ◽  
Wenhao Shen

Studies were undertaken to evaluate gaseous pollutants in workplace air within pulp and paper mills and to consider the effectiveness of photo-catalytic treatment of this air. Ambient air at 30 sampling sites in five pulp and paper mills of southern China were sampled and analyzed. The results revealed that formaldehyde and various benzene-based molecules were the main gaseous pollutants at these five mills. A photo-catalytic reactor system with titanium dioxide (TiO2) was developed and evaluated for degradation of formaldehyde, benzene and their mixtures. The experimental results demonstrated that both formaldehyde and benzene in their pure forms could be completely photo-catalytic degraded, though the degradation of benzene was much more difficult than that for formaldehyde. Study of the photo-catalytic degradation kinetics revealed that the degradation rate of formaldehyde increased with initial concentration fitting a first-order kinetics reaction. In contrast, the degradation rate of benzene had no relationship with initial concentration and degradation did not conform to first-order kinetics. The photo-catalytic degradation of formaldehyde-benzene mixtures indicated that formaldehyde behaved differently than when treated in its pure form. The degradation time was two times longer and the kinetics did not reflect a first-order reaction. The degradation of benzene was similar in both pure form and when mixed with formaldehyde.


Sign in / Sign up

Export Citation Format

Share Document