scholarly journals Research on the Formation Mechanism of Surface Morphology in Three-Excitation Ultrasonic Spatial Vibration-Assisted Turning

Author(s):  
Jingwei Duan ◽  
Ping Zou ◽  
Shiyu Wei ◽  
Rui Fang ◽  
Liting Fang

Abstract To improve the machining performance of different processing materials, a three-excitation ultrasonic spatial vibration-assisted turning system is proposed, which realizes the non-unity of the plane where the cutting trajectory of the tool is located. The influence and formation law of three-excitation ultrasonic spatial vibration-assisted turning on the surface roughness of the workpiece under different vibration parameters (amplitude) and machining parameters (cutting speed, cutting depth, and feed) were analyzed by response surface methodology. The results show that in terms of vibration parameters, the influence of ultrasonic vibration applied in the horizontal direction on surface roughness is significantly greater than that of ultrasonic vibration applied in the vertical direction, while the feed has the greatest influence on surface roughness, followed by cutting speed. The surface roughness of common turning, one-dimensional ultrasonic vibration-assisted turning, ultrasonic elliptical vibration-assisted turning, and three-excitation ultrasonic spatial vibration-assisted turning were theoretically analyzed and experimentally compared. The results show that compared with the other three turning methods, the three-excitation ultrasonic spatial vibration-assisted turning can obtain a lower surface roughness and have good machinability.

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 460
Author(s):  
Canbin Zhang ◽  
Chifai Cheung ◽  
Benjamin Bulla ◽  
Chenyang Zhao

Ultrasonic vibration-assisted cutting (UVAC) has been regarded as a promising technology to machine difficult-to-machine materials such as tungsten carbide, optical glass, and hardened steel in order to achieve superfinished surfaces. To increase vibration stability to achieve optical surface quality of a workpiece, a high-frequency ultrasonic vibration-assisted cutting system with a vibration frequency of about 104 kHz is used to machine spherical optical steel moulds. A series of experiments are conducted to investigate the effect of machining parameters on the surface roughness of the workpiece including nominal cutting speed, feed rate, tool nose radius, vibration amplitude, and cutting geometry. This research takes into account the effects of the constantly changing contact point on the tool edge with the workpiece induced by the cutting geometry when machining a spherical steel mould. The surface morphology and surface roughness at different regions on the machined mould, with slope degrees (SDs) of 0°, 5°, 10°, and 15°, were measured and analysed. The experimental results show that the arithmetic roughness Sa of the workpiece increases gradually with increasing slope degree. By using optimised cutting parameters, a constant surface roughness Sa of 3 nm to 4 nm at different slope degrees was achieved by the applied high-frequency UVAC technique. This study provides guidance for ultra-precision machining of steel moulds with great variation in slope degree in the pursuit of optical quality on the whole surface.


Author(s):  
Feng Jiao ◽  
Ming-jun Zhang ◽  
Ying Niu

Laser heating assisted cutting is a lucrative technique for machining difficult-to-machine materials such as tungsten carbide (YG20), which uses a high power laser to focally heat a workpiece before the material removal with traditional or innovative cutting tool. In the latter case, the application of ultrasonic vibration to the cutting edge was found to replace the continuous cutting mode to the interrupted one, it reduces the adhesion and entanglement of chips, improves the tool wear and surface roughness of the workpiece. The combination of laser heating assisted cutting and two-dimensional ultrasonic vibration cutting methods has been successfully applied by the authors of this paper for cutting of tungsten carbide (YG20). In this follow-up study, the proposed composite method is experimentally and theoretically verified. Through the mathematical model and simulation analysis, its advantages, including small cutting force, softening the effect and improved machining properties of the processed material (YG20) are corroborated. The dependencies between the laser power, cutting speed, depth of cut, and feed rate on the surface roughness are established via the response surface methodology. The genetic algorithm is applied to the optimization of machining parameters by setting the material removal rate as the object variable and surface roughness as a constraint variable. The results obtained strongly suggest that the optimized parameters improve the processing efficiency and furnish the required processing quality.


2012 ◽  
Vol 516 ◽  
pp. 311-316 ◽  
Author(s):  
Kyung Hee Park ◽  
Kyeong Tae Kim ◽  
Yun Hyuck Hong ◽  
Hon Jong Choi ◽  
Young Jae Choi

Ultrasonic machining can be applied for the machining of difficult-to-cut materials using ultrasonical oscillation in an axial direction on top of tool rotation, which can cause reduction of cutting temperature and tool wear. In this study, the experiments were performed on a DMG ULTRASONIC 20 linear machine tool using diamond tools in both conventional and ultrasonic vibration assisted machining. The machining performance was evaluated and compared for both cases in terms of cutting forces, machined surface roughness and tool wear. And the combination technique of 3D surface topography measurement and image processing was applied for the tool wear progress. Overall, the experimental results showed that ultrasonic machining had less tool wear and lower cutting forces at low cutting speed compared to conventional machining. Also surface roughness was slightly lower in ultrasonic machining than that without ultrasonic vibration.


2011 ◽  
Vol 189-193 ◽  
pp. 1376-1381
Author(s):  
Moola Mohan Reddy ◽  
Alexander Gorin ◽  
Khaled A. Abou El Hossein

This paper presents the prediction of a statistically analyzed model for the surface roughness,R_a of end-milled Machinable glass ceramic (MGC). Response Surface Methodology (RSM) is used to construct the models based on 3-factorial Box-Behnken Design (BBD). It is found that cutting speed is the most significant factor contributing to the surface roughness value followed by the depth of cut and feed rate. The surface roughness value decreases for higher cutting speed along with lower feed and depth of cut. Additionally, the process optimization has also been done in terms of material removal rate (MRR) to the model’s response. Ideal combinations of machining parameters are then suggested for common goal to achieve lower surface roughness value and higher MRR.


2021 ◽  
Author(s):  
He Sui ◽  
Lifeng Zhang ◽  
Shuang Wang ◽  
Zhaojun Gu

Abstract Axial ultrasonic vibration-assisted cutting (AUVC) has proved to have better machining performance compared with conventional cutting methods; however, the effect of numerous and complex influencing factors on machining performance has not been clearly revealed and a recommended combination of cutting conditions has not been proposed yet, especially for difficult-to-machine material such as Ti6Al4V alloy. This paper focuses on experimental and theoretical investigation into machining performance when cutting Ti6Al4V with the AUVC method. First, a retrospective of the separation characteristics of AUVC is provided and the variable parameter cutting characteristics are demonstrated. We classify the influencing factors on machining performance into four categories: machining parameters, vibration parameters, tool choice, and cooling conditions. The relationship between these factors in terms of their effect on machining performance is established theoretically. Then, it describes experiments to determine the influence of these factors on cutting force, tool life, and surface roughness. For absolute influence, the orders for cutting force, tool life, and surface roughness are respectively cutting depth > amplitude > feed rate > rotation speed, rotation speed > feed rate > amplitude > cutting depth, and feed rate > amplitude > cutting depth > rotation speed. However, for relative influence, the order is unified as: amplitude > feed rate > rotation speed > cutting depth. Finally, it suggests a smaller feed rate, larger amplitude, moderate rotation speed, and smaller cutting depth in addition to a WC tool coated with TiAlN and used under HPC cooling condition for optimal performance of AUVC. This recommendation is based on the theoretical analysis and experimental results of cutting force, surface roughness, and tool life.


Author(s):  
Goutam Kumar Bose

The present paper highlights selection of significant machining parameters during Electrochemical grinding while machining alumina-aluminum interpenetrating phase composites by MCDM techniques. The conflicting responses like higher material removal rate, lower surface roughness, lower overcut and lower cutting force are ensured simultaneously by a single parametric combination. Control parameters like electrolyte concentration, voltage, depth of cut and electrolyte flow rate have been considered for experimentation. VIKOR is one of the multiple criteria decision making (MCDM) models to determine the reference ranking from a set of alternatives in the presence of conflicting criteria. Finally Grey Relational Analysis is performed to optimize multiple performances in which different levels combinations of the factors are ranked based on grey relational grade. Surface roughness is given more importance than other responses, using Fuzzy Set Theory considering basic objective of the process. It is observed that substantial improvement in machining performance takes place following this technique. The study highlights the effects of different process variables on multiple performances for complex process like ECG.


Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 698
Author(s):  
Siying Ling ◽  
Minghao Li ◽  
Yong Liu ◽  
Kan Wang ◽  
Yong Jiang

Wire electrochemical micromachining (WECMM) technology is regarded a promising method to fabricate high aspect ratio microstructures on hard-to-machining materials, however, the by-product accumulation in the machining gap limits its application. In this paper, a new method called ultrasonic-assisted wire electrochemical micromachining (UA-WECMM) is proposed to improve the machining performance of WECMM. Firstly, a flow-field simulation in the machining gap was carried out; the results showed that the ultrasonic vibration of electrode can remarkably enhance the mass transport in the machining gap and improve the machining condition. Secondly, experiments were performed to confirm the effect of ultrasonic vibration, which illustrated that the vibration with proper amplitude can reduce the slit width and improve the morphology of machined surface. Moreover, the influence of other machining parameters were also discussed. Finally, a T-type micro connector with good surface roughness (Ra 0.286 μm) was fabricated on a 300-μm-thick 304 stainless steel workpiece and a micro gear (diameter: 3.362 mm; Ra: 0.271 μm) with an aspect ratio of 7 was fabricated on a 2-mm-thick workpiece. It is proved that the proposed ultrasonic-assisted wire electrochemical micromachining method has considerable potential and broad application prospects.


2016 ◽  
Vol 23 (5) ◽  
pp. 543-550 ◽  
Author(s):  
Seyedbehzad Ghafarizadeh ◽  
Jean-François Chatelain ◽  
Gilbert Lebrun

AbstractMachining is one of the most practical processes for finishing operations of composite components, allowing high-quality surface and controlled tolerances. The high-precision surface milling of carbon fiber-reinforced plastics (CFRP) is particularly applicable in the assembly of complex components requiring accurate mating surfaces as well as for surface repair or mold finishing. CFRP surface milling is a challenging operation because of the heterogeneity and anisotropy of these materials, which are the source of several types of damage, such as delamination, fiber pullout, and fiber fragmentation. To minimize the machining problems of CFRP milling and improve the surface quality, this research focuses on the effect of multiaxis machining parameters, such as the feed rate, cutting speed, and lead angle, on cutting forces and surface roughness. The results show that the surface roughness and cutting forces increase with the feed rate, whereas their variations are not uniform when changing the cutting speed. Generally, a lower surface roughness was achieved by using a lower cutting feed rate (0.063 mm/rev) and higher cutting speeds (250–500 m/min). It was also found that the cutting forces and surface roughness vary significantly and nonlinearly with the lead angle of the cutting tool with respect to the surface.


2017 ◽  
Vol 749 ◽  
pp. 107-110
Author(s):  
Yuta Masu ◽  
Tomohito Fukao ◽  
Taiga Yasuki ◽  
Masahiro Hagino ◽  
Takashi Inoue

The method of imparting ultrasonic vibration to the cutting tool is known to improve the shape accuracy and finished surface roughness. However, a uniform evaluation of this function in drilling has not been achieved, and the cutting process cannot be checked from the outside. The aim of this study is to investigate the cutting characteristics in deep hole drilling when an ultrasonic vibrator on the table of a machining center provides vibration with a frequency of 20 kHz to the work piece. The ultrasonic vibrations in this system reach the maximum amplitude in the center of the work material. We evaluated the change in finished surface roughness between the section where drilling starts to the point of maximum amplitude with ultrasonic vibration. The main cutting conditions are as follows: cutting speed (V) 12.6 (mm/min); feed rate (s) 30, 60 (mm/rev); depth of cut (t) = 32 (mm); work material, tool steel; cutting tool material, HSS; point angle (σ) 118 (°); and drill diameter (φ) 4 (mm). Lubricant powder was also added to clarify the cutting effect, and compared the condition in which there was no ultrasonic vibration. The results showed that surface roughness at the point of maximum amplitude was better than that with no vibration.


Author(s):  
Menderes Kam ◽  
Mustafa Demirtaş

This study analyzed the tool vibration (Vib) and surface roughness (Ra) during turning of AISI 4340 (34CrNiMo6) tempered steel samples using Taguchi Method. In this context, Taguchi design L18 (21 × 32) was used to analyze the experimental results. The vibration amplitude values from cutting tools were recorded for different machining parameters, control factors; two different sample hardness (46 and 53 HRc), three different cutting speeds (180, 220, 260 m.min−1), and feed rates (0.08, 0.14, 0.20 mm.rev−1) were selected. The machining parameters giving optimum Vib and Ra values were determined. Regression analysis is applied to predict values of Vib and Ra. Analysis of variance was used to determine the effects of machining parameters on the Vib and Ra values. The most important machining parameters were found to be the feed rate, sample hardness, and cutting speed for Vib and Ra, respectively. The lowest Vib and Ra values were obtained in 46 HRc sample as 0.0022 gRMS and 0.255 µm, respectively. The surface quality can be improved by reducing the sources of vibration by using appropriate machining parameters. As a result, there is a significant relationship between Ra and Vib. The lower Ra values were found during turning process of tempered steel samples according to the literature studies. It is suggested that the process can be preferred as an alternative process to grinding process due to lower cost and machining time. In application of the turning of experiment samples by ceramic cutting tool, a substantial technological and economical benefit has been observed.


Sign in / Sign up

Export Citation Format

Share Document