scholarly journals Removal of acidic Yellow Dye of wastewater by Moringa Peregrina

Author(s):  
negar saraei ◽  
Mostafa Tizghadam Ghazani

Abstract Industrial textile treatment is one of the most important and complex parts of wastewater treatment. Absorption is considered a desirable method in separating pollutants and dyes from water. In this study, the effectiveness of Moringa Peregrina seeds as a natural, non-toxic, and environment-friendly adsorbent in the treatment of colored wastewater has been investigated. First, the isotherm model and absorption kinetics were investigated, and then influential variables such as major and minor factors in the absorption process were identified. During the experiment, the amount of dye removal efficiency was measured by a spectrophotometer. Optimization of three important factors including color concentration, pH, and adsorbent dosage was done using the design of the composite central method, the response surface in the Design-Expert software. The optimal model for describing the adsorption process, the Freundlich and the pseudo-second-order model are obtained as a result and the adsorption capacity of moringa peregrina is 22.85 mg / g. In the end, code 19 acidic yellow dye with a concentration of 250 mg/L, pH = 8, and adsorbent in the amount of 0.875 g was purified to 80% of an aqueous solution. The results were obtained under constant conditions with a mixing speed of 200 rpm and a duration of 60 minutes with a reliability of 0.93. According to the test results, on average, Moringa Peregrina is effective in removing pigments from aqueous solutions under the mentioned conditions.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mashael Alshabanat ◽  
Ghadah Alsenani ◽  
Rasmiah Almufarij

The adsorption of crystal violet (CV) onto date palm fibers (DPFs) was examined in aqueous solution at 25°C. The experimental maximum adsorption capacity value was0.66×10−6. Langmuir, Freundlich, Elovich and Temkin models were applied to describe the equilibrium isotherms. The influence of pH and temperature on dye removal was evaluated. The percentage removal of CV dye by adsorption onto DPF at different pH and temperatures showed that these factors play a role in the adsorption process. Thermodynamic analysis was performed, and the Gibbs free energyΔGο, enthalpy changeΔHο, and entropyΔSοwere calculated. The negative values ofΔGοindicate spontaneous adsorption. The negative value ofΔHοindicates that the interaction between CV and DPF is exothermic, and the positive value ofΔSοindicates good affinity between DPF and CV. The kinetic data were fitted to a pseudo-second-order model.


2014 ◽  
Vol 809-810 ◽  
pp. 907-911
Author(s):  
Jun Long Wang ◽  
Jie Hou ◽  
Ting Jiang ◽  
Yong Jun He ◽  
Yao Dong Liang

Dry waters with an average diameter of 82 μm were prepared by a high speed mixed route. The formaldehyde absorption kinetics of dry waters was investigated by simulating indoor formaldehyde pollution in glass chamber. The results showed that pseudo-second order model could be used to simulate the adsorption process; the adsorption rate was highest in the initial 60 minutes; when the adsorption lasted for 180 minutes, the adsorption reached equilibrium.


2017 ◽  
Vol 2 (1) ◽  
pp. 13-26
Author(s):  
Tengku Khamanur Azma Tg. Mohd Zamri ◽  
Mimi Sakinah Abd Munaim ◽  
Zularisam Ab Wahid

Natural dye extracted from the rhizome of Curcuma longa L. were applied to bamboo yarns using exhaustion dyeing process. This study investigates the dyeing behaviour of Curcumin; the major color component isolated from rhizomes of Curcuma longa L.on bamboo yarn. Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich isotherm models were used to test the adsorption process of curcumin on bamboo yarn. Comparison of regression coefficient value indicated that the Freundlich isotherm most fitted to the adsorption of curcumin onto bamboo yarn. Furthermore, the kinetics study on this research fitted the pseudo-second order model which indicates that the basis of interaction was chemical adsorption.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2218 ◽  
Author(s):  
Carlos Grande-Tovar ◽  
William Vallejo ◽  
Fabio Zuluaga

In this work, we synthesized chitosan grafted-polyacrylic acid (CS-g-PA) through surface-initiated atom transfer radical polymerization (SI-ATRP). We also studied the adsorption process of copper and lead ions onto the CS-g-PA surface. Adsorption equilibrium studies indicated that pH 4.0 was the best pH for the adsorption process and the maximum adsorption capacity over CS-g-PA for Pb2+ ions was 98 mg·g−1 and for Cu2+ it was 164 mg·g−1, while for chitosan alone (CS), the Pb2+ adsorption capacity was only 14.8 mg·g−1 and for Cu2+ it was 140 mg·g−1. Furthermore, the adsorption studies indicated that Langmuir model describes all the experimental data and besides, pseudo-second-order model was suitable to describe kinetic results for the adsorption process, demonstrating a larger kinetic constant of the process was larger for Pb2+ than Cu2+. Compared to other adsorbents reported, CS-g-PA had comparable or even superior adsorbent capacity and besides, all these results suggest that the new CS-g-PA polymers had potential as an adsorbent for hazardous and toxic metal ions produced by different industries.


2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 653 ◽  
Author(s):  
Nina Mladenovic ◽  
Petre Makreski ◽  
Anita Tarbuk ◽  
Katia Grgic ◽  
Blazo Boev ◽  
...  

To improve the ability of the rice husk to purify colored wastewater, effluent from the alkaline scouring of cotton yarn was used immediately after the scouring (without cooling and additionally added chemicals) in order to remove the non-cellulosic silicon-lignin shield from the rice husk’s surface. This rice husk, with 93.8 mg/g adsorption capacity, behaves similarly as the rice husk treated with an optimized alkaline scouring recipe consisting of 20 g/L NaOH, 2 mL/L Cotoblanc HTD-N and 1 mL/L Kemonecer NI at 70 °C for 30 min with an adsorption capacity of 88.9 mg/g of direct Congo red dye. Treating one form of waste (rice husk) with another (effluent from the alkaline scouring of cellulosic plant fibers), in an effort to produce a material able to purify colored effluent, is an elegant environment-friendly concept based on the circular economy strategy. This will result in a closed-loop energy-efficient process of the pre-treatment of cotton (alkaline scouring), modification of rice husk using effluent from the alkaline scouring, dyeing cotton fabrics and cleaning its colored effluents with modified rice husk without adding chemicals and energy for heating.


2017 ◽  
Vol 8 (4) ◽  
pp. 479-489 ◽  
Author(s):  
Zhijun Ma ◽  
Qi Zhang ◽  
Xingyuan Weng ◽  
Changye Mang ◽  
Liwei Si ◽  
...  

Abstract Natural zeolite was modified using metal ions, including magnesium(II), aluminum(III) and titanium(IV). The modified zeolite was then used as an adsorbent for the investigation of the adsorption kinetics, isotherms, and thermodynamic parameters of fluoride ions in wastewater at various pHs and temperatures. The kinetics and thermodynamics for the removal of the fluoride ions onto the modified zeolite have also been investigated. The fluoride ion adsorption capacity of the three types of modified zeolites exhibited an increase, then decrease, with rising pH. The fluoride adsorption capacity of the modified zeolites decreased with an increase in temperature. The pseudo-second-order model is more suitable for describing the adsorption kinetic data than the pseudo-first-order model for modified zeolite and the adsorption process of the fluoride ions reveals pseudo-second-order kinetic behavior, respectively. It was found that the adsorption equilibrium data fit the Freundlich isothermal equation better than that of the Langmuir isothermal and Dubinin–Radushkevich (D–R) isothermal equations. Thermodynamic analysis suggests that the negative values of ΔG0 and ΔH0 further indicate that the fluoride adsorption process is both spontaneous and exothermic. The results of competitive adsorption tests suggest that the modified metal zeolite materials adsorb fluoride ions with high selectivity.


2018 ◽  
Vol 77 (5) ◽  
pp. 1313-1323 ◽  
Author(s):  
Jianjun Zhou ◽  
Xionghui Ji ◽  
Xiaohui Zhou ◽  
Jialin Ren ◽  
Yaochi Liu

Abstract A novel magnetic bio-adsorbent (MCIA) was developed, characterized and tested for its Cd(II) removal from aqueous solution. MCIA could be easily separated from the solution after equilibrium adsorption due to its super-paramagnetic property. The functional and magnetic bio-material was an attractive adsorbent for the removal of Cd(II) from aqueous solution owing to the abundant adsorption sites, amino-group and oxygen-containing groups on the surface of Cyclosorus interruptus. The experimental results indicated that the MCIA exhibited excellent adsorption ability and the adsorption process was spontaneous and endothermic. The adsorption isotherm was consistent with the Langmuir model. The adsorption kinetic fitted the pseudo-second-order model very well. The maximum adsorption capacity of Cd(II) onto MCIA was 40.8, 49.4, 54.6 and 56.6 mg/g at 293, 303, 313 and 323 K, respectively. And the MCIA exhibited an excellent reusability and impressive regeneration. Therefore, MCIA could serve as a sustainable, efficient and low-cost magnetic adsorbent for Cd(II) removal from aqueous solution.


2019 ◽  
Vol 80 (7) ◽  
pp. 1357-1366
Author(s):  
Jianming Liu ◽  
Runying Bai ◽  
Junfeng Hao ◽  
Bowen Song ◽  
Yu Zhang ◽  
...  

Abstract This study investigated a magnetically recycled modified polishing powder (CMIO@PP) as an adsorbent of phosphate; the CMIO@PP was synthesized by combining the modified La/Ce-containing waste polishing powder with CaO2-modified Fe3O4 (CMIO). Results indicate that the CMIO@PP nanocomposite presents a crystal structure comprising La (OH)3, Ce (OH)3, and Fe3O4, and that CMIO is uniformly dispersed in the modified polishing powder. The CMIO@PP (1:3) is a suitable choice considering its magnetism and adsorption capacity. The magnetic adsorbent exhibits a high adsorption capacity of 53.72 mg/g, a short equilibrium time of 60 min, and superior selectivity for phosphate. Moreover, the adsorbent strongly depends on the pH during the adsorption process and maintains a large adsorption capacity when the pH level is between 2 and 6. The adsorption of phosphate by the CMIO@PP (1:3) accords with the Langmuir isotherm model, and the adsorption process follows the pseudo-second order model. Meanwhile, adsorption–desorption experiments show that the adsorbent could be recycled a few times and that a high removal efficiency of phosphate from civil wastewater was achieved. Finally, mechanisms show that the adsorption of phosphate by the CMIO@PP (1:3) is mainly caused by electrostatic attraction and ligand exchange.


Author(s):  
Bruna Assis Paim dos Santos ◽  
Aline Silva Cossolin ◽  
Hélen Cristina Oliveira dos Reis ◽  
Ketinny Camargo de Castro ◽  
Evanleide Rodrigues da Silva ◽  
...  

In this study, baker’s yeast-MnO2 composites, produced by direct oxidation of yeast with KMnO4 under acidic conditions, were used as biosorbent to remove the triphenylmethane dye Malachite green (MG) from an aqueous solution. Parameters that influence the adsorption process, such as pH, contact time, temperature, initial dye concentration and biosorbent dosage, were evaluated in batch experiments. The optimum removal of MG was found to be  86.7 mg g-1 at pH 10, 1.0 g L-1 of biomass dosage and 45°C. The kinetic data of dye removal was better described by the pseudo-second-order model. The adsorption process followed the Langmuir isotherm model and the maximum biosorption capacity was estimated to be  243.9 mg g-1 (at 25°C). The negative values of ∆G° and the positive value of ∆H° indicated that the MG biosorption onto yeast-MnO2 composites is spontaneous and endothermic. Fourier transform infrared spectroscopy (FTIR) indicated that the nano-MnO2 particles deposited on yeast-MnO2 composites surface facilitated the MG adsorption. It was concluded that baker’s yeast-MnO2 composites have potential for application as adsorbent for removal of MG from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document