LncRNA DUXAP8 promotes the progression of laryngeal cancer through targeting miR-384/ POU2F1 axis

Author(s):  
Zhanfeng Yan ◽  
Xiaohui Wen ◽  
Jinsheng Dai ◽  
Jinfeng Liu ◽  
Pengpeng Hao ◽  
...  

Abstract Background Laryngeal cancer is the highest incidence of head and neck cancers in the world. Increasing evidences have demonstrated that long non-coding RNAs (lncRNAs) play crucial roles in the progression of laryngeal cancer. Despite of the essential role of lncRNA DUXAP8 in many human cancers, its function and specific mechanisms in laryngeal cancer are poorly understood. Methods Differentially expression analysis of lncRNAs in GSE59652 dataset was performed by using limma package of R language. The expression of DUXAP8, miR-384 and candidate mRNAs was evaluated by qRT-PCR. Luciferase reporter assay and RIP assay were performed to determine the direct correlation between DUXAP8, miR-384 and POU2F1. Cell proliferation of laryngeal cancer cell lines TU212 and TU177 cells was evaluated by using CCK-8 assay, colony formation assay and EdU staining assay. Xenograft tumor model in vivo and rescue experiments were performed to explore the function and mechanisms of DUXAP8 in laryngeal cancer. Results The expression of DUXAP8 in tumor tissues was higher than that in adjacent normal tissues. High level of DUXAP8 was closely correlated to the worse prognosis of laryngeal cancer patients. Knockdown of DUXAP8 inhibited the proliferation of TU212 and TU177 cells in vitro, as well as tumor growth in vivo. Furthermore, overexpression of POU2F1 significantly attenuated the inhibitory effect of sh-DUXAP8 on cell proliferation of TU212 and TU177 cells. In addition, sh-DUXAP8 significantly decreased the expression of DUXAP8 and POU2F1, while increased miR-384 expression in tumor tissues compared with sh-NC group. Conclusion DUXAP8 acted as a sponge of tumor suppressor miR-384 and then upregulated POU2F1 expression, thereby promoted the development of laryngeal cancer. Our findings suggest that DUXAP8 may serve as a potential therapeutic target for laryngeal cancer.

2021 ◽  
Vol 30 ◽  
pp. 096368972110255
Author(s):  
Qing Wang ◽  
Kai Li ◽  
Xiaoliang Li

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Increasing evidence suggests that long non-coding RNAs (lncRNAs) function in the tumorigenesis of NSCLC. LINC00958, a newly identified lncRNA, has been reported to be closely linked to tumorigenesis in several cancers. However, its specific role in NSCLC remains unclear. In this study, we determined the expression of LINC00958 in NSCLC by RT-qPCR analysis and evaluated cell proliferation and migration by CCK-8 and transwell assays, respectively. We established a xenograft tumor model to examine the effect of LINC00958 on tumor growth in vivo. Luciferase reporter assays were performed to determine the interaction between LINC00958 and miR-204-3p and the interaction between miR-204-3p and KIF2A. We found that LINC00958 was up-regulated in NSCLC tissues and cell lines. Down-regulation of LINC00958 inhibited cell proliferation and migration in vitro and suppressed tumor growth in vivo. Besides, miR-204-3p was identified as a target of LINC00958 and miR-204-3p inhibitor could reverse the inhibitory effect of LINC00958 knockdown on proliferation and migration of NSCLC cells. We also validated that KIF2A, a direct target of miR-204-3p, was responsible for the biological role of LINC00958. KIF2A antagonized the effect of miR-204-3p on NSCLC cell proliferation and migration and was regulated by LINC00958/miR-204-3p. Taken together, these data indicate that the LINC00958/miR-204-3p/KIF2A axis is critical for NSCLC progression, which might provide a potential therapeutic target of NSCLC.


2020 ◽  
Author(s):  
Wei Zhang ◽  
Bo Wang ◽  
Yang Yang ◽  
Zhen Zhang ◽  
Quan Wang ◽  
...  

Abstract Background circular RNAs (circRNAs) recently have been emerged as vital regulators for involvement of initiation and progression of diverse kinds of human cancers. This study aimed to investigate the role of circRNAs in colorectal cancer (CRC). Methods The expression profile of circRNAs in 5 pairs of CRC tissues and adjacent normal tissues were analyzed by Microarray. Quantitative real-time PCR and in situ hybridization and Base Scope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, functional experiments in vitro and in vivo were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and IGF2BP3 or has_miR-375. Results hsa_circ_0000231 was evidently up-regulated in CRC primary tissues, which was indicated to poor prognosis of CRC patients. The results demonstrated that hsa_circ_0000231 could promote CRC cell proliferation as well as tumorigenesis in vitro and in vivo. Mechanistic analysis showed that hsa_circ_0000231 might on the one hand act as a ceRNA (competing endogenous RNA) of miR-375 to regulate cyclin D2 (CCND2), and on the other hand bind to IGF2BP3 protein to protect CCND2 from being degraded. Conclusion Our findings suggest that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2. This discovery implied that has_circ_0000231 may be a potential new diagnostic and therapeutic biomarker for CRC.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jia Han ◽  
Wei Hou ◽  
Bi-qing Cai ◽  
Fan Zhang ◽  
Jian-cai Tang

This study aimed to investigate the inhibitory effect of 12-epi-napelline on leukemia cells and its possible mechanisms. The inhibitory effects of 12-epi-napelline on K-562 and HL-60 cells were evaluated using the CCK-8 assay, cell cycle arrest and apoptosis were detected by flow cytometry, and the expression of related proteins was measured by western blot. A K-562 tumor model was established to evaluate the antitumor effect of 12-epi-napelline in vivo. A reduction in leukemia cell viability was observed after treatment with 12-epi-napelline. It was determined that the cell cycle was arrested in the G0/G1 phase, and the cell apoptosis rate was increased. Moreover, caspase-3 and Bcl-2 were downregulated, whereas cleaved caspase-3 and caspase-9 were upregulated. Further study revealed that 12-epi-napelline could suppress the expression of PI3K, AKT, p-AKT, and mTOR. Insulin-like growth factor 1 (IGF-1) attenuated 12-epi-napelline-induced apoptosis and ameliorated the repression of PI3K, AKT, p-AKT, and mTOR by 12-epi-napelline. Animal experiments clearly showed that 12-epi-napelline inhibited tumor growth. In conclusion, 12-epi-napelline restrained leukemia cell proliferation by suppressing the PI3K/AKT/mTOR pathway in vitro and in vivo.


2020 ◽  
Author(s):  
Wei Zhang ◽  
Bo Wang ◽  
Yang Yang ◽  
Zhen Zhang ◽  
Quan Wang ◽  
...  

Abstract Background and aim Circular RNAs (circRNAs) have emerged as vital regulators of the initiation and progression of diverse kinds of human cancers. This study aimed to investigate the role of circRNAs in colorectal cancer (CRC). Methods The expression profiles of circRNAs in five pairs of CRC tissues and adjacent normal tissues were analyzed using microarray. Quantitative real-time polymerase chain reaction, in situ hybridization, and BaseScope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, in vitro and in vivo functional experiments were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescence in situ hybridization, dual-luciferase reporter assay, and RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and Insulin-like growth factor 2 mRNA-binding protein 3(IGF2BP3) or has_miR-375. Results The expression of hsa_circ_0000231 was upregulated in CRC primary tissues, which indicated poor prognosis of patients with CRC. The results demonstrated that hsa_circ_0000231 could promote CRC cell proliferation as well as tumorigenesis in vitro and in vivo. The mechanistic analysis showed that hsa_circ_0000231 might, on the one hand, act as a competing endogenous RNA of miR-375 to promote cyclin D2 (CCND2) and, on the other hand, bind to the IGF2BP3 protein to prevent CCND2 degradation. Conclusion The findings suggested that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2, implying that has_circ_0000231 might be a potential new diagnostic and therapeutic biomarker of CRC.


2021 ◽  
Author(s):  
Xiaowei Wu ◽  
Minjie Li ◽  
Yu Deng ◽  
Shun Ke ◽  
Fan Li ◽  
...  

Abstract Background: Recently, accumulating studies highlight the critical regulatory roles of fibroblast growth factors (FGF), and a series of FGF, participated in the progression of multiple human cancers, including non-small cell lung cancer (NSCLC). Methods: Gene transcriptome analysis was used to identify the differential expression of FGF11 in NSCLC tumor tissues, GSE75037 and GSE81089 database analysis was performed on NSCLC tumor tissues and adjacent normal tissues to validate the expression of FGF11. Then, we selected 100 cases of NSCLC tumor tissues and 30 cases of matched adjacent normal tissues to confirm the mRNA and protein level of FGF11 by qRT-PCR and immunohistochemistry. Bioinformatics analysis and dual luciferase reporter analysis was also performed to examine the direct regulatory of FGF11 by miR-525-5p. CCK-8 and transwell assay was also performed to detect the cell proliferation, migration and invasion. Signal pathway analysis was also investigated the effect of FGF11 on NSCLC cell proliferation was associated with the hypoxia signaling pathway. The role of FGF11 in NSCLC tumor growth was further explored by in vivo study.Results: FGF11 was overexpressed in NSCLC tumor tissues and tumor cell lines, the high expression of FGF11 was closely associated with poor overall survival of NSCLC patients. In vitro loss- and gain- of function experiments demonstrated that FGF11 knockdown inhibited, whereas FGF11 overexpression promoted the proliferation, migration and invasion of NSCLC cells. The dual luciferase reporter assay confirmed that FGF11 was downregulated by miR-525-5p, and the effect of FGF11 on cell proliferation, migration and invasion could be interfered by miR-525-5p. We further found that FGF11 had significant correlation with hypoxia signaling pathway activation, meanwhile regulating HIF-1α. Further experiments implicated that the oncogenic role of FGF11 could be blocked via interfering of HIF-1α in NSCLC cells. Moreover, knockdown of FGF11 suppressed NSCLC tumor growth whereas overexpression of FGF11 promoted tumor growth in vivo. Conclusions: FGF11 might be functioned as an oncogene in tumor development, the findings of our study revealed a novel regulatory mechanism of FGF11 involved in hypoxia signaling pathway, which offers novel strategies for the treatment of NSCLC.


2020 ◽  
Author(s):  
Jiale Zhang ◽  
Yangyang Li ◽  
Yuqi Liu ◽  
Guangzhi Xu ◽  
Yue Hei ◽  
...  

Abstract Background Recent studies have pointed out that long non-coding RNAs (lncRNAs) play a key role in tumorigenesis, including glioma. Nuclear paraspeckle assembly transcript 1 (NEAT1), a lncRNA, has been reported to be participated in the development and progression of many types of tumors and promotes cancer cell proliferation, migration, invasion, and drug resistance. The exact role and regulatory mechanism of NEAT1 in gliomas still need to be further explored. Methods NEAT1 expression was detected in paired glioma tissues and adjacent normal tissues, as well as in glioma cell lines by quantitative real-time PCR (qRT-PCR). Cell viability and apoptosis were measured using flow cytometry, colony formation assays and TdT-mediated dUTP nick-end labeling (TUNEL) assay. The mechanism of competing endogenous RNA (ceRNA) between NEAT1 and miR-324-5p was determined using bioinformatics analysis, RIP and luciferase reporter assay. Results Here we demonstrated that lncRNA NEAT1 was upregulated and significantly associated with poor prognosis in glioma tissues. Through gain- and loss-of NEAT1 expression, we found that knockdown of NEAT1 inhibited the abilities of cell proliferation and induced G0/G1 arrest and apoptosis in vitro, suppressed tumorigenesis in vivo via sponging miR-324-5p and then upregulated KCTD20 expression. In addition, NEAT1 reversed the effects of miR-324-5p on the proliferation and apoptosis of glioma cells, and involved the inhibition of potassium channel tetramerization protein domain containing 20 (KCTD20) expression. Conclusion Collectively, our findings demonstrate that NEAT1 epigenetically up-regulates KCTD20 expression through competitively binding miR-324-5p, and also provides a potential therapeutic target for human glioma.


2020 ◽  
Author(s):  
Fei Teng ◽  
Juxiang Zhang ◽  
Yi Chen ◽  
Xiaodong Shen ◽  
Yanjiao Guo ◽  
...  

Abstract Background: Recent evidence indicated that the lncRNA NKX2-1-AS1 (NKX2-1 antisense RNA 1) plays an important role in cancer progression and metastasis. However, the associated molecular mechanisms of NKX2-1-AS1 in GC are still unclear. Methods: To determine the target of the study by bioinformatic analysis. NKX2-1-AS1 expression was measured in paired tumor and non-tumor tissues of 178 GC patients, by quantitative reverse transcription PCR. The in vitro and in vivo biological functions of NKX2-1-AS1 were examined by loss-of-function and gain-of-function experiments. The potential mechanisms of this competing endogenous RNA (ceRNA) were elucidated using dual-luciferase reporter assay, quantitative PCR, Western blot, and fluorescence in situ hybridization (FISH). Results: NKX2-1-AS1 expression was upregulated in GC cell lines and tumor tissues, which was correlated with tumor progression and enhanced angiogenesis. Functionally, NKX2-1-AS1 overexpression promoted GC cell proliferation, metastasis, invasion, and angiogenesis, while NKX2-1-AS1 downregulation reversed these effects, both in vitro and in vivo. Bioinformatics analysis and dual-luciferase assay showed that the microRNA miR-145-5p is a direct target of NKX2-1-AS1, and that NKX2-1-AS1 acts as a ceRNA that regulates angiogenesis in the context of GC. The mechanistic study revealed that miR-145-5p specifically targets serpin family E member 1 (SERPINE1), and that the complex NKX2-1-AS1/miR-145-5p activates VEGFR2 signaling, via SERPINE1, to promote tumor proliferation and angiogenesis. Conclusion: NKX2-1-AS1 upregulation is associated with tumor cell proliferation, increased angiogenesis, and poor prognosis in GC patients. NKX2-1-AS1 regulates SERPINE1 expression and VEGFR2 signaling by acting as a ceRNA for miR-145-5p.


Author(s):  
Lunjian Chen ◽  
Xiaorong Huang ◽  
Xinxin Chen

Cholangiocarcinoma (CCA) is one of the most malignant adenocarcinomas arising from bile duct epithelial cells. However, the molecular mechanism regulating CCA development and progression still needs to be investigated. Here we found that miR-365 was downregulated in CCA tissues compared with adjacent normal tissues. By functional experiments, we found that overexpression of miR-365 significantly inhibited CCA cell proliferation and promoted cellular apoptosis in vitro. Furthermore, administration with miR-365 markedly suppressed the growth of tumor tissues in vivo. Mechanistically, we identified E2F2 as the target gene of miR-365 in CCA cells. We found that overexpression significantly inhibited the expression of E2F2 in CCA cells, and there was an inverse correlation between the expression levels of E2F2 and miR-365 in CCA tissues. We also found that E2F2 was highly expressed in CCA tissues and cell lines. Restoration of E2F2 in miR-365-overexpressing CCA cells promoted cell viability and reduced cellular apoptosis in CCA. Collectively, our study demonstrated the essential role of miR-365 and its functional mechanism in CCA cells, which provided a new insight on the design of therapeutic targets for CCA treatment.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Hanqing Hong ◽  
Hai Zhu ◽  
Shujun Zhao ◽  
Kaili Wang ◽  
Nan Zhang ◽  
...  

AbstractAs a new class of non-coding RNA, circular RNAs (circRNAs) play crucial roles in the development and progression of various cancers. However, the detailed functions of circRNAs in cervical cancer have seldom been reported. In this study, circRNA sequence was applied to detect the differentially expressed circRNAs between cervical cancer tissues and adjacent normal tissues. The relationships between circCLK3 level with clinicopathological characteristics and prognosis were analyzed. In vitro CCK-8, cell count, cell colony, cell wound healing, transwell migration and invasion, and in vivo tumorigenesis and lung metastasis models were performed to evaluate the functions of circCLK3. The pull-down, RNA immunoprecipitation (RIP), luciferase reporter and rescue assays were employed to clarify the interaction between circCLK3 and miR-320a and the regulation of miR-320a on FoxM1. We found that the level of circCLK3 was remarkably higher in cervical cancer tissues than in adjacent normal tissues, and closely associated with tumor differentiation, FIGO stage and depth of stromal invasion. Down-regulated circCLK3 evidently inhibited cell growth and metastasis of cervical cancer in vitro and in vivo, while up-regulated circCLK3 significantly promoted cell growth and metastasis in vitro and in vivo. The pull-down, luciferase reporter and RIP assays demonstrated that circCLK3 directly bound to and sponge miR-320a. MiR-320a suppressed the expression of FoxM1 through directly binding to 3′UTR of FoxM1 mRNA. In addition, FoxM1 promoted cell proliferation, migration, and invasion of cervical cancer, while miR-320a suppressed cell proliferation, migration, and invasion through suppressing FoxM1, and circCLK3 enhanced cell proliferation, migration and invasion through sponging miR-320a and promoting FoxM1 expression. In summary, circCLK3 may serve as a novel diagnostic biomarker for disease progression and a promising molecular target for early diagnoses and treatments of cervical cancer.


2020 ◽  
Author(s):  
Wei Zhang ◽  
Bo Wang ◽  
Yang Yang ◽  
Zhen Zhang ◽  
Quan Wang ◽  
...  

Abstract Background and aim Circular RNAs (circRNAs) have emerged as vital regulators of the initiation and progression of diverse kinds of human cancers. This study aimed to investigate the role of circRNAs in colorectal cancer (CRC).Methods The expression profiles of circRNAs in five pairs of CRC tissues and adjacent normal tissues were analyzed using microarray. Quantitative real-time polymerase chain reaction, in situ hybridization, and BaseScope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, in vitro and in vivo functional experiments were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescence in situ hybridization, dual-luciferase reporter assay, and RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and Insulin-like growth factor 2 mRNA-binding protein 3(IGF2BP3) or has_miR-375. Results The expression of hsa_circ_0000231 was upregulated in CRC primary tissues, which indicated poor prognosis of patients with CRC. The results demonstrated that hsa_circ_0000231 could promote CRC cell proliferation as well as tumorigenesis in vitro and in vivo. The mechanistic analysis showed that hsa_circ_0000231 might, on the one hand, act as a competing endogenous RNA of miR-375 to promote cyclin D2 (CCND2) and, on the other hand, bind to the IGF2BP3 protein to prevent CCND2 degradation. Conclusion The findings suggested that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2, implying that has_circ_0000231 might be a potential new diagnostic and therapeutic biomarker of CRC.


Sign in / Sign up

Export Citation Format

Share Document