scholarly journals miR-124-3p enhances dendritic cell-mediated anti-tumor immunity by targeting CYLD/4-1BBL pathway

Author(s):  
Wujin Li ◽  
Yujie Lei ◽  
Yangming Chen ◽  
Kai Chen ◽  
Yunchao Huang ◽  
...  

Abstract Background: MicroRNAs play important roles in dendritic cell (DCs)-mediated immunity, but their specific functions in lung cancer remain unclear.Objective: To investigate miR-124-3p regulation of DC-mediated immune response via CYLD/4-1BBL pathway, and the inhibitory effect of miR-124-3p on lung cancer.Methods: DCs were cultured and amplified in vitro, and then transfected with miR-124-3p mimic, miR-124-3P inhibitor, or siRNA CYLD. Double luciferase reporter genes were used to detect the target relationship between miR-124-3p and CYLD. qRT-PCR and western blotting were used to detect the expression levels of CYLD and 4-1BBL. Flow cytometry was used to assess the proliferation rate of CD4+ T cells co-cultured with untransfected DCs and those transfected with miR-124-3p mimic or miR-124-3p inhibitor. C57BL/6 tumor bearing mice, implanted with LL/2 lung adenocarcinoma cells, were administered DCs transfected with the miR-124-3p mimic or untransfected DCs. The tumor size and weight of mice were then measured. Results: miR-124-3p and CYLD3’UTR contained target-binding site, and overexpression of miR-124-3p enhanced the expression of CYLD and 4-1BBL. CD4+ T cells co-cultured with miR-124-3p mimic-transfected DCs showed significantly increased proliferation. In tumor-bearing mice, tumor inhibition rate was 73.5%, and tumor volume and weight were significantly decreased after the administration of DCs containing the miR-124-3p mimic.Conclusions: The expression of CYLD was regulated by miR-124-3p, which, in turn, increased the expression of 4-1BBL. miR-124-3p regulated DCs function via CYLD/4-1BBL cascade. miR-124-3p plays important roles in DCs-induced T cells, thereby enhancing anti-tumor immunity.

2021 ◽  
Author(s):  
Yujie Lei ◽  
Wujin Li ◽  
Yangming Chen ◽  
Kai Chen ◽  
Yunchao Huang ◽  
...  

Abstract Objective: To investigate miR-124-3p regulation of DC-mediated immune response via CYLD/4-1BBL pathway, and the inhibitory effect of miR-124-3p on lung cancer.Methods: DCs were cultured and amplified in vitro, and then transfected with miR-124-3p mimic, miR-124-3P inhibitor, or siRNA CYLD. Double luciferase reporter genes were used to detect the target relationship between miR-124-3p and CYLD. qRT-PCR and western blotting were used to detect the expression levels of CYLD and 4-1BBL. Flow cytometry was used to assess the proliferation rate of CD4+ T cells co-cultured with untransfected DCs and those transfected with miR-124-3p mimic or miR-124-3p inhibitor. C57BL/6 tumor bearing mice, implanted with LL/2 lung adenocarcinoma cells, were administered DCs transfected with the miR-124-3p mimic or untransfected DCs. The tumor size and weight of mice were then measured. Results: miR-124-3p and CYLD3’UTR contained target-binding site, and overexpression of miR-124-3p enhanced the expression of CYLD and 4-1BBL. CD4+ T cells co-cultured with miR-124-3p mimic-transfected DCs showed significantly increased proliferation. In tumor-bearing mice, tumor inhibition rate was 73.5%, and tumor volume and weight were significantly decreased after the administration of DCs containing the miR-124-3p mimic.Conclusions: The expression of CYLD was regulated by miR-124-3p, which, in turn, increased the expression of 4-1BBL. miR-124-3p regulated DCs function via CYLD/4-1BBL cascade. miR-124-3p plays important roles in DCs-induced T cells, thereby enhancing anti-tumor immunity.


2021 ◽  
Author(s):  
Ioannis Morianos ◽  
Aikaterini Tsitsopoulou ◽  
Konstantinos Potaris ◽  
Dimitrios Valakos ◽  
Ourania Fari ◽  
...  

Abstract Background: Although tumor-infiltrating T cells represent a favorable prognostic marker for cancer patients, the majority of these cells are rendered with an exhausted phenotype. Hence, there is an unmet need to identify factors which can reverse this dysfunctional profile and restore their anti-tumorigenic potential. Activin-A is a pleiotropic cytokine, exerting a broad range of pro- or anti-inflammatory functions in different disease contexts, including allergic and autoimmune disorders and cancer. Given that activin-A exhibits a profound effect on CD4+ T cells in the airways and is elevated in lung cancer patients, we hypothesized that activin-A can effectively regulate anti-tumor immunity in lung cancer.Methods: To evaluate the effects of activin-A in the context of lung cancer, we utilized the OVA-expressing Lewis Lung Carcinoma mouse model as well as the B16F10 melanoma model of pulmonary metastases. The therapeutic potential of activin-A-treated lung tumor-infiltrating CD4+ T cells was evaluated in adoptive transfer experiments, using CD4-/--tumor bearing mice as recipients. In a reverse approach, we disrupted activin-A signaling on CD4+ T cells using an inducible model of CD4+ T cell-specific knockout of activin-A type I receptor. RNA-Sequencing analysis was performed to assess the transcriptional signature of these cells and the molecular mechanisms which mediate activin-A’s function. In a translational approach, we validated activin-A’s anti-tumorigenic properties using primary human tumor-infiltrating CD4+ T cells from lung cancer patients.Results: Administration of activin-A in lung tumor-bearing mice attenuated disease progression, an effect associated with heightened ratio of infiltrating effector to regulatory CD4+ T cells. Therapeutic transfer of lung tumor-infiltrating activin-A-treated CD4+ T cells, delayed tumor progression in CD4-/- recipients and enhanced T cell-mediated immunity. CD4+ T cells genetically unresponsive to activin-A, failed to elicit effective anti-tumor properties and displayed an exhausted molecular signature governed by the transcription factors Tox and Tox2. Of translational importance, treatment of activin-A on tumor-infiltrating CD4+ T cells from lung cancer patients augmented their immunostimulatory capacity towards autologous CD4+ and CD8+ T cells.Conclusions: In this study, we introduce activin-A as a novel immunomodulatory factor in the lung tumor microenvironment, which bestows exhausted CD4+ T cells with effector properties.


Author(s):  
Ioannis Morianos ◽  
Aikaterini Tsitsopoulou ◽  
Konstantinos Potaris ◽  
Dimitrios Valakos ◽  
Ourania Fari ◽  
...  

Abstract Background Although tumor-infiltrating T cells represent a favorable prognostic marker for cancer patients, the majority of these cells are rendered with an exhausted phenotype. Hence, there is an unmet need to identify factors which can reverse this dysfunctional profile and restore their anti-tumorigenic potential. Activin-A is a pleiotropic cytokine, exerting a broad range of pro- or anti-inflammatory functions in different disease contexts, including allergic and autoimmune disorders and cancer. Given that activin-A exhibits a profound effect on CD4+ T cells in the airways and is elevated in lung cancer patients, we hypothesized that activin-A can effectively regulate anti-tumor immunity in lung cancer. Methods To evaluate the effects of activin-A in the context of lung cancer, we utilized the OVA-expressing Lewis Lung Carcinoma mouse model as well as the B16F10 melanoma model of pulmonary metastases. The therapeutic potential of activin-A-treated lung tumor-infiltrating CD4+ T cells was evaluated in adoptive transfer experiments, using CD4−/−-tumor bearing mice as recipients. In a reverse approach, we disrupted activin-A signaling on CD4+ T cells using an inducible model of CD4+ T cell-specific knockout of activin-A type I receptor. RNA-Sequencing analysis was performed to assess the transcriptional signature of these cells and the molecular mechanisms which mediate activin-A’s function. In a translational approach, we validated activin-A’s anti-tumorigenic properties using primary human tumor-infiltrating CD4+ T cells from lung cancer patients. Results Administration of activin-A in lung tumor-bearing mice attenuated disease progression, an effect associated with heightened ratio of infiltrating effector to regulatory CD4+ T cells. Therapeutic transfer of lung tumor-infiltrating activin-A-treated CD4+ T cells, delayed tumor progression in CD4−/− recipients and enhanced T cell-mediated immunity. CD4+ T cells genetically unresponsive to activin-A, failed to elicit effective anti-tumor properties and displayed an exhausted molecular signature governed by the transcription factors Tox and Tox2. Of translational importance, treatment of activin-A on tumor-infiltrating CD4+ T cells from lung cancer patients augmented their immunostimulatory capacity towards autologous CD4+ and CD8+ T cells. Conclusions In this study, we introduce activin-A as a novel immunomodulatory factor in the lung tumor microenvironment, which bestows exhausted CD4+ T cells with effector properties.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A717-A717
Author(s):  
Abigail Overacre-Delgoffe ◽  
Anthony Cillo ◽  
Hannah Bumgarner ◽  
Ansen Burr ◽  
Justin Tometich ◽  
...  

BackgroundColorectal cancer remains one of the most common and deadliest cancers worldwide and effective therapies are lacking. While immunotherapy has revolutionized treatment for many cancers, the overwhelming majority of colorectal cancer patients are non-responsive and the 5-year survival rate for advanced disease is <20%. Immunotherapeutic response has been associated with select members of the microbiome in melanoma; however, the potential benefit in colorectal cancer and the underlying mechanisms remain unclear. We sought to determine how specific members of the intestinal microbiome affect anti-tumor immunity in colorectal cancer (CRC) in hopes of discovering novel treatments and revealing potential hurdles to current therapeutic response in CRC patients.MethodsWe utilized a carcinogen-induced mouse model of CRC and colonized half of the tumor-bearing mice with Helicobacter hepaticus (Hhep) 7 weeks post AOM. Tumor number was assessed 12 weeks post AOM. We isolated lymphocytes from the lamina propria, colonic epithelium, mesenteric lymph nodes, and tumor(s) to track the spatial and transcriptional Hhep-specific and endogenous immune responses during tumor progression through 5’ single cell RNAseq, flow cytometry, and immunofluorescence. In addition, we utilized 16S sequencing and FISH to track Hhep colonization, location within the colon, and its impact on the surrounding microbiome.ResultsWe have found that rational modification of the microbiome of colon tumor-bearing mice through addition of a single bacteria, Hhep, led to tumor control or clearance and a significant survival advantage. Colonization led to the expansion of the lymphatic network and development of numerous peri- or intra-tumoral tertiary lymphoid structures (TLS) composed of Hhep-specific CD4 T follicular helper cells (TFH) as well as the bacteria itself. This led to an overall ‘heating’ of the tumor, wherein we saw an increase of CD4 T cell infiltration to the tumor core as well as an increase in CD103+ type 1 DC (cDC1) recruitment through increased chemokines such as CCL5 and XCL1. Hhep-specific TFH were both necessary and sufficient to drive TLS formation, increased immune invasion, and anti-tumor immunity.ConclusionsWe have shown that addition of a single bacteria, Hhep, leads to a reduction in CRC tumor burden or clearance through lymphatic expansion, TLS formation, and remodeling of the tumor microenvironment, and that Hhep-specific T cells are required for tumor control. These studies suggest that rational modification of the microbiome and microbiome-specific T cells can positively impact anti-tumor immunity and may represent a unique immunotherapeutic target to turn resistant tumors into responsive tumors.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


2021 ◽  
pp. 1-16
Author(s):  
Yang Wang ◽  
Bo He ◽  
Yan Dong ◽  
Gong-Jin He ◽  
Xiao-Wei Qi ◽  
...  

BACKGROUND: The prognosis of lung cancer patients is poor without useful prognostic and diagnostic biomarker. To search for novel prognostic and diagnostic markers, we previously found homeobox-A13 (HOXA13) as a promising candidate in lung cancer. OBJECTIVE: To determine the precisely clinical feature, prognostic and diagnostic value, possible role and mechanism of HOXA13. METHODS: Gene-expression was explored by real-time quantitative-PCR, western-blot and tissue-microarray. The associations were analyzed by Chi-square test, Kaplan-Meier and Cox-regression. The roles and mechanisms were evaluated by MTS, EdU, transwell, xenograft tumor and luciferase-reporter assays. RESULTS: HOXA13 expression is increased in tumors, and correlated with age of patients. HOXA13 expression is associated with unfavorable overall survival and relapse-free survival of patients in four cohorts. Interestingly, HOXA13 has different prognostic significance in adenocarcinoma (ADC) and squamous-cell carcinoma (SCC), and is a sex- and smoke-related prognostic factor only in ADC. Importantly, HOXA13 can serve as a diagnostic biomarker for lung cancer, especially for SCC. HOXA13 can promote cancer-cell proliferation, migration and invasion in vitro, and facilitate tumorigenicity and tumor metastasis in vivo. HOXA13 acts the oncogenic roles on tumor growth and metastasis by regulating P53 and Wnt/β-catenin signaling activities in lung cancer. CONCLUSIONS: HOXA13 is a new prognostic and diagnostic biomarker associated with P53 and Wnt/β-catenin signaling pathways.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A126-A126
Author(s):  
John Goulding ◽  
Mochtar Pribadi ◽  
Robert Blum ◽  
Wen-I Yeh ◽  
Yijia Pan ◽  
...  

BackgroundMHC class I related proteins A (MICA) and B (MICB) are induced by cellular stress and transformation, and their expression has been reported for many cancer types. NKG2D, an activating receptor expressed on natural killer (NK) and T cells, targets the membrane-distal domains of MICA/B, activating a potent cytotoxic response. However, advanced cancer cells frequently evade immune cell recognition by proteolytic shedding of the α1 and α2 domains of MICA/B, which can significantly reduce NKG2D function and the cytolytic activity.MethodsRecent publications have shown that therapeutic antibodies targeting the membrane-proximal α3 domain inhibited MICA/B shedding, resulting in a substantial increase in the cell surface density of MICA/B and restoration of immune cell-mediated tumor immunity.1 We have developed a novel chimeric antigen receptor (CAR) targeting the conserved α3 domain of MICA/B (CAR-MICA/B). Additionally, utilizing our proprietary induced pluripotent stem cell (iPSC) product platform, we have developed multiplexed engineered, iPSC-derived CAR-MICA/B NK (iNK) cells for off-the-shelf cancer immunotherapy.ResultsA screen of CAR spacer and ScFv orientations in primary T cells delineated MICA-specific in vitro activation and cytotoxicity as well as in vivo tumor control against MICA+ cancer cells. The novel CAR-MICA/B design was used to compare efficacy against NKG2D CAR T cells, an alternative MICA/B targeting strategy. CAR-MICA/B T cells showed superior cytotoxicity against melanoma, breast cancer, renal cell carcinoma, and lung cancer lines in vitro compared to primary NKG2D CAR T cells (p<0.01). Additionally, using an in vivo xenograft metastasis model, CAR-MICA/B T cells eliminated A2058 human melanoma metastases in the majority of the mice treated. In contrast, NKG2D CAR T cells were unable to control tumor growth or metastases. To translate CAR-MICA/B functionality into an off-the-shelf cancer immunotherapy, CAR-MICA/B was introduced into a clonal master engineered iPSC line to derive a multiplexed engineered, CAR-MICA/B iNK cell product candidate. Using a panel of tumor cell lines expressing MICA/B, CAR-MICA/B iNK cells displayed MICA specificity, resulting in enhanced cytokine production, degranulation, and cytotoxicity. Furthermore, in vivo NK cell cytotoxicity was evaluated using the B16-F10 melanoma cell line, engineered to express MICA. In this model, CAR-MICA/B iNK cells significantly reduced liver and lung metastases, compared to untreated controls, by 93% and 87% respectively.ConclusionsOngoing work is focused on extending these preclinical studies to further support the clinical translation of an off-the-shelf, CAR-MICA/B iNK cell cancer immunotherapy with the potential to overcome solid tumor escape from NKG2D-mediated mechanisms of recognition and killing.ReferenceFerrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, Tsoucas D, Franz B, May KF Jr, Harvey CJ, Kobold S, Pyrdol JW, Yoon C, Yuan GC, Hodi FS, Dranoff G, Wucherpfennig KW. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018 Mar 30;359(6383):1537–1542.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A172-A172
Author(s):  
Guillermo Rangel Rivera ◽  
Guillermo Rangel RIvera ◽  
Connor Dwyer ◽  
Dimitrios Arhontoulis ◽  
Hannah Knochelmann ◽  
...  

BackgroundDurable responses have been observed with adoptive T cell therapy (ACT) in some patients. However, current protocols used to expand T cells often exhibit suboptimal tumor control. Failure in these therapies has been attributed to premature differentiation and impaired metabolism of the infused T cells. Previous work done in our lab showed that reduced PI3Kδ signaling improved ACT. Because PI3Kγ and PI3Kδ have critical regulatory roles in T cell differentiation and function, we tested whether inhibiting PI3Kγ could recapitulate or synergize PI3Kδ blockade.MethodsTo test this, we primed melanoma specific CD8+ pmel-1 T cells, which are specific to the glycoprotein 100 epitope, in the presence of PI3Kγ (IPI-459), PI3Kδ (CAL101 or TGR-1202) or PI3Kγ/δ (IPI-145) inhibitors following antigen stimulation with hgp100, and then infused them into 5Gy total body irradiated B16F10 tumor bearing mice. We characterized the phenotype of the transferred product by flow cytometry and then assessed their tumor control by measuring the tumor area every other day with clippers. For metabolic assays we utilized the 2-NBDG glucose uptake dye and the real time energy flux analysis by seahorse.ResultsSole inhibition of PI3Kδ or PI3Kγ in vitro promoted greater tumor immunity and survival compared to dual inhibition. To understand how PI3Kδ or PI3Kγ blockade improved T cell therapy, we assessed their phenotype. CAL101 treatment produced more CD62LhiCD44lo T cells compared to IPI-459, while TGR-1202 enriched mostly CD62LhiCD44hi T cells. Because decreased T cell differentiation is associated with mitochondrial metabolism, we focused on CAL101 treated T cells to study their metabolism. We found that CAL101 decreased glucose uptake and increased mitochondrial respiration in vitro, indicating augmented mitochondrial function.ConclusionsThese findings indicate that blocking PI3Kδ is sufficient to mediate lasting tumor immunity of adoptively transferred T cells by preventing premature differentiation and improving mitochondrial fitness. Our data suggest that addition of CAL101 to ACT expansion protocols could greatly improve T cell therapies for solid tumors by preventing T cell differentiation and improving mitochondrial function.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kuijie Liu ◽  
Hua Zhao ◽  
Hongliang Yao ◽  
Sanlin Lei ◽  
Zhendong Lei ◽  
...  

MicroRNAs are a class of small, noncoding RNAs that function as critical regulators of gene expression by targeting mRNAs for translational repression or degradation. In this study, we demonstrate that expression of microRNA-124 (miR-124) is significantly downregulated in colorectal cancer tissues and cell lines, compared to the matched adjacent tissues. We identified and confirmed inhibitor of apoptosis-stimulating protein of p53 (iASPP) as a novel, direct target of miR-124 using target prediction algorithms and luciferase reporter gene assays. Overexpression of miR-124 suppressed iASPP protein expression, upregulated expression of the downstream signaling molecule nuclear factor-kappa B (NF-κB), and attenuated cell viability, proliferation, and colony formation in SW480 and HT-29 colorectal cancer cells in vitro. Forced overexpression ofiASPPpartly rescued the inhibitory effect of miR-124 on SW480 and HT29 cell proliferation. Taken together, these findings shed light on the role and mechanism of action of miR-124, indicate that the miR-124/iASPP axis can regulate the proliferation of colorectal cancer cells, and suggest that miR-124 may serve as a potential therapeutic target for colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document