scholarly journals Remote Work and the Environment: Exploratory Analysis of Indoor Air Quality of Commercial Offices and the Home Office

Author(s):  
Kamrie Sarnosky ◽  
Mark Benden ◽  
Leslie Cizmas ◽  
Annette Regan ◽  
Garett Sansom

Abstract Background: The COVID-19 pandemic has accelerated an already existing trend of individuals increasingly working remotely. With the growing popularity of remote working, specifically in a home office, there is a critical need to better understand and characterize the potential environmental differences between these two spaces. Indoor air pollution can have adverse health effects and impair cognitive functioning. Methods: This small pilot cohort study (N=22) recruited home and office workers to better understand the indoor air quality between these spaces. Air contaminants collected and assessed included PM10 and PM2.5, carbon dioxide (CO2), and total volatile organic compounds (TVOCs). Results: Findings showed a strong statistically significant increase in all measured variables within homes in comparison to traditional offices (p<0.001). For instance, The mean PM2.5 level in the traditional office space was 1.93 µg/m3 whereas it was more than twice this amount (5.97 µg/m3) in home offices.Conclusion: These results indicate that those who work from home are at increased risk due to longer exposures to higher levels of certain contaminants, the importance to better develop interventions to mitigate this reality is underscored by the fact that many workers will be moving to home-based offices in the coming years.

2020 ◽  
Vol 63 (10) ◽  
pp. 458-462
Author(s):  
Kang Hyun Lee ◽  
Dong-Kyu Kim

Background and Objectives Otorhinolaryngology clinics are frequently exposed to various air pollutants. This can have a potentially harmful effect on the health of the healthcare personnel. However, there is still a lack of studies on the assessment of indoor air quality in otorhinolaryngology clinics. Therefore, this study aimed to measure indoor air quality in otorhinolaryngology clinics.Subjects and Method In this study, we prospectively measured indoor air quality indices [particulate matter (PM), carbon dioxide (CO<sub>2</sub>), total volatile organic compounds (VOCs), PM2.5, Nitrogen dioxide (NO<sub>2</sub>), carbon monoxide (CO), and ozone] using portable passive air quality monitoring sensors in otorhinolaryngology clinics.Results The mean concentrations of PM, CO<sub>2</sub>, VOCs, and NO<sub>2</sub> were significantly higher during office hours than after; however, there was no significant differences in CO and ozone concentration between the two time periods. The proportions of tolerable to poor-quality (exceeding acceptable level) levels of CO<sub>2</sub>, total VOCs, NO<sub>2</sub> was 25%, 25%, 12.5% during office hours, respectively. On the other hand, there was no proportion of tolerable to poor-quality level of PM, CO, ozone during office hours.Conclusion We found that otorhinolaryngology clinics are easily exposed to ambient indoor air pollution. Therefore, we suggest implement health-related protective strategies for ambient indoor air pollution in otorhinolaryngology clinics may be needed for healthcare personnel.


2021 ◽  
Author(s):  
Sunyoung Kim ◽  
Gregory Sohanchyk

UNSTRUCTURED Indoor air pollution is harmful to everybody, but children are of particular concern because they are more vulnerable to its adverse health effects from air pollutants. However, while mobile technology is increasingly being designed to support occupants’ monitoring and improvement of air quality indoors, little attention has been paid to its use by and for children. Previously, we created inAirKids, a child-friendly device to promote children’s engagement with monitoring indoor air quality through a participatory design process. This paper investigates how inAirKids affects children’s understanding of and engagement with indoor air quality through a longitudinal field deployment study. We deployed inAirKids in the homes of nine children aged 6 and 7 and investigated their use for up to sixteen weeks by conducting semi-structured, bi-weekly interviews. Results show that participants promptly engaged with inAirKids but quickly lost interest in it due to the lack of interactive factors to sustain engagement. Besides, we identified two design considerations that can foster children’s sustained engagement with monitoring indoor air quality: Design interactivity for engaging in continuity and Incorporate hands-on activities as part of IAQ monitoring for experiential learning. To the best of our knowledge, this is the first longitudinal field deployment to investigate how to engage children in monitoring indoor air quality.


Author(s):  
Gabriela Ventura Silva ◽  
Anabela O. Martins ◽  
Susana D. S. Martins

Indoor air pollution has obtained more attention in a moment where “stay at home” is a maximum repeated for the entire world. It is urgent to know the sources of pollutants indoors, to improve the indoor air quality. This study presents some results obtained for twelve incense products, used indoors, at home, and in temples, but also in spa centers or yoga gymnasiums, where the respiratory intensity is high, and the consequences on health could be more severe. The focus of this study was the gaseous emissions of different types of incense, performing a VOC screening and identifying some specific VOCs different from the usual ones, which are known or suspected to cause severe chronic health effects: carcinogenic, mutagenic, and reprotoxic. Thirteen compounds were selected: benzene, toluene, styrene, naphthalene, furfural, furan, isoprene, 2-butenal, phenol, 2-furyl methyl ketone, formaldehyde, acetaldehyde, and acrolein. The study also indicated that incense cone type shows a higher probability of being more pollutant than incense stick type, as from the 12 products tested, four were cone type, and three of them were in the group of the four higher polluters. Benzene and formaldehyde presented worrying levels in the major part of the products, above guideline values established by the WHO. Unfortunately, there are no limit values established for indoor air for all the compounds studied, but this fact should not exempt us from taking action to alert the population to the potential dangers of using those products. From this study, acetaldehyde, acrolein, furfural, and furan emerge as compounds with levels to deserve attention.


2011 ◽  
Vol 20 (1) ◽  
pp. 187-197 ◽  
Author(s):  
Min Jeong Kim ◽  
Yong Su Kim ◽  
Abtin Ataei ◽  
Jeong Tai Kim ◽  
Jung Jin Lim ◽  
...  

The purpose of this study was to evaluate changes in the concentration of air pollutants in the indoor environments, which could be caused by seasonal changes or changes in operating conditions of subway metro stations. In fact, there are many different types of pollution that can cause contamination in subway stations, and changes in operating conditions can also lead to changes in the indoor air quality (IAQ). Therefore, in order to establish a proper management of IAQ, it would be necessary to evaluate the changes in IAQ according to the changes in conditions. To do this, the present study used a multivariate analysis of variance (MANOVA). The results of testing the hypothesis proved that two groups, divided by the condition of a platform screen door (PSD) system, could differ statistically. Furthermore, those multidimensional differences were caused by installation of a PSD system. When applied to a real-time tele-monitoring system, MANOVA could clearly identify the daily and weekly variations of IAQ in the subway station, as well as the PSD system’s condition. Accordingly, this method could be useful for developing a multivariate system to statistically evaluate the experimental IAQ results in order to optimise operating conditions in a subway metro station to improve IAQ, and to minimise adverse health effects on passengers by exposure to harmful substances.


Author(s):  
Mohd Saleem ◽  
Mohd Adnan Kausar ◽  
Fahmida Khatoon ◽  
Sadaf Anwar ◽  
Syed Monowar Alam Shahid ◽  
...  

In many aspects of life quality, bio-contaminants and indoor air quality have had catastrophic consequences, including a negative impact on human health with an increased prevalence of allergic respiratory reactions, asthma, and infectious diseases. We aimed to evaluate the quality of indoor air environment and find out the association between human health and indoor air pollution and also to assess the physical health status of a group of Saudi and non-Saudi populations during this pandemic. Also, we aimed to assess the most common health condition or symptoms associated with ventilation. A questionnaire was distributed online to test indoor air quality, ventilation status, common signs and symptoms of any allergy or mental status and their relationship to certain variables. A total of 362 respondents were included. Before living in the current home, flu or Influenza and chapped lips were more prevalent than allergies and chapped lips signs while living in the current home. (12.2% , 10.8% vs. 18.5% , 13.55% before and after respectively) Multiple colds were the second most common symptom (10.2%). Hoarse voice and headaches were the least common symptoms experienced; each constituted 4.4%. During the COVID-19 Pandemic, most respondents wore a facemask, approximately 76.5%; and almost one-third of respondents had bright natural light inside the current home (43.1%). The presence of natural light within the current home was significantly associated with symptoms experienced during living in the current house (p<0.05). Natural sunlight exposure could decrease allergic symptoms and minor health problems associated with poor ventilation and air quality indoors. In current living homes, the majority of respondents never used air purifiers (72.9 percent). In order to get attention from people to enhance the quality and ventilation mechanism of indoor air, special care and awareness of the effects of the use of air purifiers on human health is needed.


2018 ◽  
Vol 225 ◽  
pp. 05018
Author(s):  
Noor Huwaida Yahaya ◽  
Ftwi Yohaness Hagos ◽  
Mohamad Firdaus Basrawi

This work focuses on indoor air quality evaluation of commercial buildings in Kuantan. Some buildings have been selected to monitor indoor air quality. The research has been carried out only in Kuantan, which focused on hotels and government buildings. Some sample measurements were taken which include air temperature, relative humidity, and air movement, carbon monoxide (CO), carbon dioxide (CO2), ozone (O3), respirable particulate matter (PM 10), formaldehyde and total volatile organic compound (TVOC). In addition, questionnaires were conducted on a number of workers in each building to determine the level of health and illness caused by air in the building where they work. Hence, this study has analyzed the link between the questioner results and the results of indoor air measurements that were carried out. From surveys, it appears there are four buildings that have low air flow, four buildings have a lot of dust and five buildings have a high temperature. In contrast, four buildings have a good indoor air quality.


2014 ◽  
Vol 40 (3) ◽  
pp. 259-268 ◽  
Author(s):  
Ana Maria da Conceição Ferreira ◽  
Massano Cardoso

Objective: To determine whether indoor air quality in schools is associated with the prevalence of allergic and respiratory diseases in children. Methods: We evaluated 1,019 students at 51 elementary schools in the city of Coimbra, Portugal. We applied a questionnaire that included questions regarding the demographic, social, and behavioral characteristics of students, as well as the presence of smoking in the family. We also evaluated the indoor air quality in the schools. Results: In the indoor air of the schools evaluated, we identified mean concentrations of carbon dioxide (CO2) above the maximum reference value, especially during the fall and winter. The CO2 concentration was sometimes as high as 1,942 ppm, implying a considerable health risk for the children. The most prevalent symptoms and respiratory diseases identified in the children were sneezing, rales, wheezing, rhinitis, and asthma. Other signs and symptoms, such as poor concentration, cough, headache, and irritation of mucous membranes, were identified. Lack of concentration was associated with CO2 concentrations above the maximum recommended level in indoor air (p = 0.002). There were no other significant associations. Conclusions: Most of the schools evaluated presented with reasonable air quality and thermal comfort. However, the concentrations of various pollutants, especially CO2, suggest the need for corrective interventions, such as reducing air pollutant sources and improving ventilation. There was a statistically significant association between lack of concentration in the children and exposure to high levels of CO2. The overall low level of pollution in the city of Coimbra might explain the lack of other significant associations.


2020 ◽  
Vol 10 (13) ◽  
pp. 4631
Author(s):  
Motokazu Moritani ◽  
Norifumi Watanabe ◽  
Kensuke Miyamoto ◽  
Kota Itoda ◽  
Junya Imani ◽  
...  

Recent indoor air quality studies show that even 1000 parts per million (ppm) concentration of Carbon Dioxide (CO2) has an adverse effect on human intellectual activities. Therefore, it is required to keep the CO 2 concentration below a certain value in a room. In this study, in order to analyze the diffusion tendency of carbon dioxide by breathing, we constructed a simultaneous multi-point sensing system equipped with a carbon dioxide concentration sensor to measure indoor environment. Furthermore, it was evaluated whether the prediction model can be effectively used by comparing the prediction value by the model and the actually measured value from the sensor. The experimental results showed that CO 2 by exhaled breathing diffuses evenly throughout the room regardless of the sensor’s relative positions to the human test subjects. The existing model is sufficiently accurate in a room which has above at least a 0.67 cycle/h ventilation cycle. However, there is a large gap between the measured and the model’s predicted values in a room with a low ventilation cycle, and that suggests a measurement with a sensor still is necessary to precisely monitor the indoor air quality.


10.14311/492 ◽  
2003 ◽  
Vol 43 (6) ◽  
Author(s):  
M. V. Jokl

Human physiology research makes evident that the Weber-Fechner law applies not only to noise perception but also to the perception of other environmental components. Based on this fact, new decibel units for dor component representing indoor air quality in majority locations have been proposed: decicarbdiox dCd (for carbon dioxide CO2) and decitvoc dTv (for total volatile organic compound TVOC). Equations of these new units have been proved by application of a) experimental relationships between odor intensity (representing odor perception by the human body) and odor concentrations of CO2 and TVOC, b) individually  measured CO2 and TVOC levels (concentrations) – from these new decibel units can be calculated and their values compared with decibel units of noise measured in the same locations. The undoubted benefit of using the decibel scale is that it gives much better approximation to human perception of odor intensity compared to the CO2 and TVOC concentration scales.


Sign in / Sign up

Export Citation Format

Share Document