scholarly journals The Efficacy of Mootral Supplementation on Methane Production and Rumen Fermentation Characteristics in Ruminants Fed Different Styles

Author(s):  
Eslam Ahmed ◽  
Naoki Fukuma ◽  
Masaaki Hanada ◽  
Takehiro Nishida

Abstract Background: Using natural feed supplements to mitigate methane emissions from ruminants is a promising strategy. Many antimethanogenic compounds have been used to alter rumen fermentation, yet their potential to reduce methane production effectively is not consistent across different kinds of feeding styles (forage:concentrate ratios). Therefore, this study was conducted to investigate the impacts of Mootral (MT), a natural combination of garlic powder and bitter orange extract, on methane production, rumen fermentation, and digestibility in different feeding models commonly used for ruminants. The dietary treatments were 1000 g grass/kg ration (10 GRS), 8 GRS + 200 g concentrate/kg ration (2CON), 6GRS + 4CON, 4GRS + 6CON, and 2GRS + 8CON. MT was supplemented at 200 g/kg of the feed. Each group consisted of 6 replicates. The experiment was performed as a batch culture for 24 h at 39 °C. This procedure was repeated in 3 consecutive runs. Results: The results of this experiment showed that supplementation with MT strongly reduced methane production in all kinds of feeding models (P<0.001). Its efficacy in reducing methane/digestible dry matter was 44% in the 10GRS diet, and this reductive power increased with the inclusion of CON up to a 69.5% reduction with the 2GRS + 8CON diet. MT application significantly increased gas and carbon dioxide production and the concentration of ammonia-nitrogen, but decreased the pH (P<0.001). In contrast, it did not interfere with organic matter and fiber digestibility. Supplementation with MT was effective in altering rumen fermentation toward less acetate and more propionate and butyrate. Additionally, it improved the production of total volatile fatty acids in all feeding models (P<0.001). Conclusions: The MT combination showed effective methane reduction by improving rumen fermentation characteristics without exhibiting adverse effects on fiber digestibility. Thus, MT could be used with all kinds of feeding models to effectively mitigate methane emissions from ruminants.

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1029
Author(s):  
Eslam Ahmed ◽  
Naoki Fukuma ◽  
Masaaki Hanada ◽  
Takehiro Nishida

This In Vitro study was conducted to investigate the impact of plant-bioactives extract (PE), a combination of garlic powder and bitter orange extract, on methane production, rumen fermentation, and digestibility in different feeding models. The dietary treatments were 1000 g grass/kg ration + 0 g concentrate/kg ration (100:0), 80:20, 60:40, 40:60, and 20:80. The PE was supplemented at 200 g/kg of the feed. Each group consisted of 6 replicates. The experiment was performed as an In Vitro batch culture for 24 h at 39 °C. This procedure was repeated in three consecutive runs. The results of this experiment showed that supplementation with PE strongly reduced methane production in all kinds of feeding models (p < 0.001). Its efficacy in reducing methane/digestible dry matter was 44% in the 100:0 diet, and this reduction power increased up to a 69.2% with the inclusion of concentrate in the 20:80 diet. The PE application significantly increased gas and carbon dioxide production and the concentration of ammonia-nitrogen, but decreased the pH (p < 0.001). In contrast, it did not interfere with organic matter and fiber digestibility. Supplementation with PE was effective in altering rumen fermentation toward less acetate and more propionate and butyrate (p < 0.001). Additionally, it improved the production of total volatile fatty acids in all feeding models (p < 0.001). In conclusion, the PE combination showed effective methane reduction by improving rumen fermentation characteristics without exhibiting adverse effects on fiber digestibility. Thus, PE could be used with all kinds of feeding models to effectively mitigate methane emissions from ruminants.


2020 ◽  
Vol 8 (8) ◽  
pp. 1160 ◽  
Author(s):  
Jiangkun Yu ◽  
Liyuan Cai ◽  
Jiacai Zhang ◽  
Ao Yang ◽  
Yanan Wang ◽  
...  

This study was performed to explore the predominant responses of rumen microbiota with thymol supplementation as well as effective dose of thymol on rumen fermentation. Thymol at different concentrations, i.e., 0, 100 mg/L, 200 mg/L, and 400 mg/L (four groups × five replications) was applied for 24 h of fermentation in a rumen fluid incubation system. Illumina MiSeq sequencing was applied to investigate the ruminal microbes in addition to the examination of rumen fermentation. Thymol doses reached 200 mg/L and significantly decreased (p < 0.05) total gas production (TGP) and methane production; the production of total volatile fatty acids (VFA), propionate, and ammonia nitrogen, and the digestibility of dry matter and organic matter were apparently decreased (p < 0.05) when the thymol dose reached 400 mg/L. A thymol dose of 200 mg/L significantly affected (p < 0.05) the relative abundance of 14 genera of bacteria, three species of archaea, and two genera of protozoa. Network analysis showed that bacteria, archaea, and protozoa significantly correlated with methane production and VFA production. This study indicates an optimal dose of thymol at 200 mg/L to facilitate rumen fermentation, the critical roles of bacteria in rumen fermentation, and their interactions with the archaea and protozoa.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 166
Author(s):  
Pichad Khejornsart ◽  
Anusorn Cherdthong ◽  
Metha Wanapat

Alternative feed sources can be utilized to reduce enteric methane (CH4) emissions, a major greenhouse gas that contributes to global warming. This study aimed to evaluate the potential use of tropical plants to improve digestibility, reduce protozoal populations, improve rumen fermentation, and minimize methane emissions from ruminants. The plants considered herein grow in tropical climates, are easily accessible in large quantities, and are directly related to human food production. Nine plants that grow naturally in tropical climates were assessed. Plant supplementation substantially enhanced accumulative gas production at 24 h (p < 0.05). The apparent organic matter digestibility (AOMDvt) of the diet was not affected by five of the nine plants. With the addition of the plant material, ammonia nitrogen concentrations were reduced by up to 47% and methane concentrations were reduced by 54%. Five of the nine plant materials reduced methane production in terms of CH4/dry matter and CH4/digestibility of the organic matter by 15–35% and 8–24%, respectively. In conclusion, supplementation with plants with high tannin contents was shown to be a viable strategy for improving rumen fermentation, reducing protozoal populations, and limiting methane emissions. In this regard, the leaves of Piper sarmentosum, Acmella oleracea, Careya arborea, and Anacardium occidentale were especially promising.


2021 ◽  
pp. 1158-1164
Author(s):  
Anuthida Seankamsorn ◽  
Anusorn Cherdthong ◽  
Sarong So ◽  
Metha Wanapat

Background and Aim: Crude glycerin is changed to propionate in the rumen, while chitosan can be used as a feed supplement to increase propionic acid concentration and decrease methane (CH4) production. We hypothesized that supplementation with a combination of a high level of crude glycerin with chitosan could have a beneficial effect on ruminal fermentation and mitigate CH4 production. This study aimed to explore the combined effects of crude glycerin and chitosan supplementation on nutrient digestibility, rumen fermentation, and CH4 calculation in native Thai bulls. Materials and Methods: Four 2-year-old native Thai bulls, weighing 150±20 kg, were kept in a 2×2 factorial arrangement in a 4×4 Latin square design. Factor A represented the incorporation of crude glycerin at 10.5% and 21% of the dry matter (DM) of a total mixed ration (TMR), and factor B represented the supplementation of chitosan at 1% and 2% DM of a TMR. Results: Increasing levels of crude glycerin at 21% decreased DM intake by 0.62 kg/day compared with 10.5% crude glycerin (p<0.05), whereas nutrient digestibility did not change (p>0.05). The incorporated crude glycerin and supplemented chitosan levels did not affect the pH, temperature, concentrations of ammonia-nitrogen, microbial population, and blood urea nitrogen (p>0.05). Supplemented chitosan and incorporated crude glycerin did not show any interaction effects on the molar portions and total volatile fatty acids (VFAs), except estimated CH4. Increasing the incorporated crude glycerin levels increased propionate and decreased the ratio of acetate to propionate ratio, whereas levels of butyrate, acetate, and total VFAs were unchanged. The combination of crude glycerin at 21% in the TMR with chitosan at 2% reduced CH4 estimation by 5.08% compared with the other feed treatment. Conclusion: Increasing incorporated crude glycerin levels in a TMR significantly elevated the propionate concentration, whereas combining 21% crude glycerin in the TMR diet with 2% chitosan supplementation could depress CH4 estimation more effectively than adding one of these supplements alone.


2014 ◽  
Vol 54 (10) ◽  
pp. 1871 ◽  
Author(s):  
Arturo Samuel Gomez Insuasti ◽  
Yury Tatiana Granja Salcedo ◽  
Pablo de Souza Castagnino ◽  
Bruno Ramalho Vieira ◽  
Euclides Braga Malheiros ◽  
...  

The effects of glycerol with fat sources as a feed alternative were investigated in the ration for Nellore steers (Bos indicus). Eight cannulated steers at 30 months of age with initial bodyweight of 554 ± 36.0 kg were used in a double 4 by 4 Latin square design with four consecutive 16-day periods. Treatments were three different diets with lipid sources (soybean, soybean oil and calcium salts of fatty acids) and one diet control without lipid sources. All diets formulated contained 10% crude glycerol and 5% ether extract with a forage:concentrate ratio of 35:65; corn silage was used as forage. The ruminal liquid was sampled for 24 h and ruminal fermentations were monitored by measuring pH, concentrations of ammonia nitrogenand volatile fatty acids in rumen fluid. Urine samples were obtained from the total collection for 24 h for estimation of rumen microbial protein supply using urinary purine derivatives. Our results showed that the use of lipid sources combined with glycerol did not induce significant changes in rumen pH, acetate molar proportion, ruminal microbial protein or dry matter intake. Although the acetate molar proportion was kept constant within normal parameters, the propionate molar proportion was increased by the diet containing lipid sources. Moreover, we found that there was a negative effect of lipid sources on crude protein and neutral detergent fibre corrected for ash and protein intake, and one positive effect on ether extract intake. We believe that association between fat and glycerol may affect rumen fermentation parameters through reducing fibre intake and increasing propionate production and ammonia nitrogen.


2017 ◽  
Vol 48 (2) ◽  
pp. 63-69
Author(s):  
M. Joch ◽  
V. Kudrna ◽  
B. Hučko

AbstractThe objective of this study was to determine the effects of geraniol and camphene at three dosages (300, 600, and 900 mg l-1) on rumen microbial fermentation and methane emission in in vitro batch culture of rumen fluid supplied with a 60 : 40 forage : concentrate substrate (16.2% crude protein, 33.1% neutral detergent fibre). The ionophore antibiotic monensin (8 mg/l) was used as positive control. Compared to control, geraniol significantly (P < 0.05) reduced methane production with increasing doses, with reductions by 10.2, 66.9, and 97.9%. However, total volatile fatty acids (VFA) production and in vitro dry matter digestibility were also reduced (P < 0.05) by all doses of geraniol. Camphene demonstrated weak and unpromising effects on rumen fermentation. Camphene did not decrease (P > 0.05) methane production and slightly decreased (P < 0.05) VFA production. Due to the strong antimethanogenic effect of geraniol a careful selection of dose and combination with other antimethanogenic compounds may be effective in mitigating methane emission from ruminants. However, if a reduction in total VFA production and dry matter digestibility persisted in vivo, geraniol would have a negative effect on animal productivity.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0260918
Author(s):  
Felista W. Mwangi ◽  
Benedicte Suybeng ◽  
Christopher P. Gardiner ◽  
Robert T. Kinobe ◽  
Edward Charmley ◽  
...  

Desmanthus (Desmanthus spp.), a tropically adapted pasture legume, is highly productive and has the potential to reduce methane emissions in beef cattle. However, liveweight gain response to desmanthus supplementation has been inconclusive in ruminants. This study aimed to evaluate weight gain, rumen fermentation and plasma metabolites of Australian tropical beef cattle in response to supplementation with incremental levels of desmanthus forage legume in isonitrogenous diets. Forty-eight Brahman, Charbray and Droughtmaster crossbred beef steers were pen-housed and fed a basal diet of Rhodes grass (Chloris gayana) hay supplemented with 0, 15, 30 or 45% freshly chopped desmanthus forage on dry matter basis, for 140 days. Varying levels of lucerne (Medicago sativa) hay were added in the 0, 15 and 30% diets to ensure that all diets were isonitrogenous with the 45% desmanthus diet. Data were analyzed using the Mixed Model procedures of SAS software. Results showed that the proportion of desmanthus in the diet had no significant effect on steer liveweight, rumen volatile fatty acids molar proportions and plasma metabolites (P ≥ 0.067). Total bilirubin ranged between 3.0 and 3.6 μmol/L for all the diet treatments (P = 0.67). All plasma metabolites measured were within the expected normal range reported for beef cattle. Rumen ammonia nitrogen content was above the 10 mg/dl threshold required to maintain effective rumen microbial activity and maximize voluntary feed intake in cattle fed low-quality tropical forages. The average daily weight gains averaged 0.5 to 0.6 kg/day (P = 0.13) and were within the range required to meet the target slaughter weight for prime beef markets within 2.5 years of age. These results indicate that desmanthus alone or mixed with other high-quality legume forages can be used to supplement grass-based diets to improve tropical beef cattle production in northern Australia with no adverse effect on cattle health.


2021 ◽  
Author(s):  
Sonny Ramos ◽  
Seon Ho Kim ◽  
Chang Dae Jeong ◽  
Lovelia L. Mamuad ◽  
A-rang Son ◽  
...  

Abstract Background: Rumen bacterial community is mainly affected by the type of diet consumed by the host animals. High concentrate diet increases the abundance of lactic acid producers and utilizers due to high level of non-structural carbohydrates thus reducing the number of fiber-degrading bacteria because of drastic decrease in pH. Dietary buffers are essential in regulating rumen pH through the compounds responsible in resisting drastic decrease in pH once cattle were fed with high-concentrate diet. However, no study has evaluated the effects of buffering capacity and efficiency in alleviating chronic acidosis in rumen. Ruminal metataxonomic and fermentation characteristics analyses were conducted to evaluate the effect of different buffering capacities on in vitro and in vivo experiments in high-concentrate fed Hanwoo steers. Results: Results revealed that BC0.9% and BC0.5% had similar and significant effect (P < 0.05) on in vitro ruminal fermentation at 3 to 24 h incubation. Both BC0.9% and BC0.5% had significantly highest (P < 0.05) buffering capacity, pH, and ammonia-nitrogen (NH3-N) than BC0.3% and CON at 24 h of incubation. Individual and total volatile fatty acids (VFA) were significantly lowest in CON. Increasing buffering capacity concentration showed linear effect on pH at 6 to 24 h while total gas and NH3-N at 3 and 12 h. Phylum Bacteroidetes dominated all treatments but a higher abundance of Firmicutes in BC0.5% than others. Ruminoccocus bromii and Succiniclasticum ruminis were dominant in BC0.5% and Bacteroides massiliensis in BC0.3%. The normalized data of relative abundance of observed OTUs’ representative families have grouped the CON with BC0.3% in the same cluster, whereas BC0.5% and BC0.9% were clustered separately which indicates the effect of varying buffering capacity of buffer agents. Principal coordinate analysis (PCoA) on unweighted UniFrac distances revealed close similarity of bacterial community structures within and between treatments and control, in which BC0.9% and BC0.3% groups showed dispersed community distribution. Conclusion: Our findings showed that increasing buffering capacity enhances rumen fermentation parameters and affects rumen microbiome by altering bacterial community through distinct structure between high and low buffering capacity, thus an important factor contributed to the prevention of ruminal acidosis during a high-concentrate diet.


1967 ◽  
Vol 69 (3) ◽  
pp. 355-366 ◽  
Author(s):  
T. W. Griffiths

1. An improved artificial rumen apparatus of the dialysis type with multiple fermentation units was built and a method for its operation was evolved. Biochemical criteria of validity were used and particular reference was made to the molar percentage of the volatile fatty acids produced.2. It was found that the apparatus was best used in a comparative manner, to measure treatment differences produced between individual fermentation units.3. A series of experiments was carried out to measure the effects of a range of dietary treatments on rumen fermentation. In each case an in vivo comparison was also made using a cow with a permanent rumen fistula.4. Correlation coefficients for treatment differences of 0·43 and 0·46 were found for ammonia T.V.F.A., and 0·73, 0·90 and 0·70 for the molecular proportions of acetic, propionic and butyric all the latter being significant.5. The results were discussed with particular reference to the advantages and limitations of apparatus and the most suitable application of technique.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2648
Author(s):  
Eslam Ahmed ◽  
Naoki Fukuma ◽  
Masaaki Hanada ◽  
Takehiro Nishida

This study is the first to evaluate the chemical composition and impacts of four different edible insects, Acheta domesticus (A.d), Brachytrupes portentosus (B.p), Gryllus bimaculatus (G.b), and Bombyx mori (B.m), on the digestibility, rumen fermentation, and methane production when used as a substitute for 25% of the soybean meal (SBM) in a ruminant diet through in vitro incubation. The dietary treatments were 100% grass hay, 60% grass hay + 40% SBM, 60% grass hay + 30% SBM + 10% A.d, 60% grass hay + 30% SBM + 10% B.p, 60% grass hay + 30% SBM + 10% G.b, and 60% grass hay + 30% SBM + 10% B.m. The experiment was conducted as a short-term batch culture for 24 h at 39 °C, and the incubation was repeated in 3 consecutive runs. Chemical analysis of the insects showed that they were rich in fat (14–26%) with a high proportion of unsaturated fatty acids (60–70%). Additionally, the insects were rich in protein (48–61%) containing all essential amino acids and the amino acid profiles of the insects were almost the same as that of SBM. The inclusion of insects did not affect nutrient digestibility or the production of volatile fatty acids but did increase the production of ammonia-nitrogen. The addition of G.b and B.m led to decrease in methane production by up to 18% and 16%, respectively. These results reveal that substitution of 25% SBM in the diet with the tested insects had no negative impacts, and their potential to reduce methane production is an environmental benefit.


Sign in / Sign up

Export Citation Format

Share Document