scholarly journals Statistics and Computational Fluid Dynamics Analyses of the Experimentally Confirmed Thermal Behavior of Self-designed Internally Cooled Smart Cutting Tool

Author(s):  
Erkan Öztürk ◽  
Kemal Yıldızlı

Abstract When compared with dry machining, using traditional cutting fluids has some weaknesses such as environmental pollution, high machining costs and harmful effects on human health. Internally cooled cutting tools (ICCT) have been a promising, sustainable, health-friendly and green technologies for turning applications. However, the effects of different types of internal coolant fluids on insert tip temperature (Ttip) have not been investigated for ICCTs. Within effective cooling, machining quality of metallic materials and tool life can improve. Therefore, a conjugate heat transfer (CHT) model for a self-designed internally cooled smart cutting tool (ICSCT) was set. The CHT simulation was experimentally confirmed using pure water. After that, the effects of flow velocity (Vf), inlet temperature of the coolant fluid (Tinlet) alongside different types of glycol-based heat transfer fluids (including pure water) on Ttip were statistically evaluated by the Taguchi method and analysis of the variance (ANOVA). It was found that the most effective factor was the Tinlet at a contribution ratio level of 88.32%. Additionally, Vf and the type of heat transfer fluid were found to be significant according to statistics. Hence, since no external coolant is used, the designed smart tool can be counted as being environmentally friendly and health friendly. In conclusion, the glycol-based fluids can be a better choice for internally cooled tool designs owing to their superior features, e.g., corrosion prevention, nontoxicity and stable heat transfer capability at lower temperatures compared to pure water although pure water has better thermal properties than the glycol-based fluids.

Author(s):  
Mohamad Aramesh ◽  
Fathollah Pourfayaz ◽  
Mehdi Haghir ◽  
Alibakhsh Kasaeian ◽  
Mohammad H Ahmadi

In this article, the performance of a double-effect LiBr-H2O absorption refrigeration cycle is studied and is improved by applying solar energy and utilizing nanofluids. A trough collector is used to preheat the working fluid before entering the generator of the cycle. In addition, four different nanofluids are considered as the heat transfer fluid of the collector: Al2O3, Ag, Cu, and CuO. The effects of using nanofluids on the outlet temperature of the heat transfer fluid, the temperature of the working fluid entering the generator, the heat produced by the generator, and COP of the cycle are studied. Different concentrations of the nanoparticles from 0 to 2.5% are considered for the nanofluids. The results indicate that in all the concentrations, Ag nanoparticles will have a better performance comparing to the other types. Furthermore, it was concluded that the higher concentrations of the nanoparticles and along with it the higher inlet temperature of the generator will decrease the generator heat production rate up to 4%. Moreover, considering the constant cooling capacity of the cycle, usage of the Ag nanoparticles in the concentration of 2.5% increases the value of COP up to 3.9%, with respect to the pure water.


2021 ◽  
Vol 10 (4) ◽  
pp. 518-537
Author(s):  
R. Nasrin ◽  
S. A. Sweety ◽  
I. Zahan

Temperature dissipation in a proficient mode has turned into a crucial challenge in industrial sectors because of worldwide energy crisis. In heat transfer analysis, shell and tube thermal exchangers is one of the mostly used strategies to control competent heat transfer in industrial progression applications. In this research, a numerical analysis of turbulent flow has been conceded in a shell and tube thermal exchanger using Kays-Crawford model to investigate the thermal performance of pure water and different concentrated water-MWCNT nanofluid. By means of finite element method the Reynold-Averaged Navier-Stokes (RANS) and heat transport equations along with suitable edge conditions have been worked out numerically. The implications of velocity, solid concentration, and temperature of water-MWCNT nanofluid on the fluid flow formation and heat transfer scheme have been inspected thoroughly. The numerical results indicate that the variation of nanoparticles solid volume fraction, inflow fluid velocity and inlet temperature mannerism considerably revolutionize in the flow and thermal completions. It is perceived that using 3% concentrated water-MWCNT nanofluid, higher rate of heat transfer 12.24% is achieved compared that of water and therefore to enhance the efficiency of this heat exchanger. Furthermore, a new correlation has been developed among obtained values of thermal diffusion rate, Reynolds number and volume concentration of nanoparticle and found very good correlation coefficient among the values.


Inventions ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 14
Author(s):  
Messaoud Badache ◽  
Zine Aidoun ◽  
Parham Eslami-Nejad ◽  
Daniela Blessent

Compared to conventional ground heat exchangers that require a separate pump or othermechanical devices to circulate the heat transfer fluid, ground coupled thermosiphons or naturallycirculating ground heat exchangers do not require additional equipment for fluid circulation in theloop. This might lead to a better overall efficiency and much simpler operation. This paper providesa review of the current published literature on the different types of existing ground coupledthermosiphons for use in applications requiring moderate and low temperatures. Effort has beenfocused on their classification according to type, configurations, major designs, and chronologicalyear of apparition. Important technological findings and characteristics are provided in summarytables. Advances are identified in terms of the latest device developments and innovative conceptsof thermosiphon technology used for the heat transfer to and from the soil. Applications arepresented in a novel, well-defined classification in which major ground coupled thermosiphonapplications are categorized in terms of medium and low temperature technologies. Finally,performance evaluation is meticulously discussed in terms of modeling, simulations, parametric,and experimental studies.


2014 ◽  
Vol 1051 ◽  
pp. 985-991
Author(s):  
Osman Ali Hamadou ◽  
Khamlichi Abdellatif

Sea water desalination through solar radiation distillation process can achieve low cost and sustainable fresh water for remote dry areas. In conventional passive solar stills, the solar radiation passes through the transparent cover and supplies heat to sea water with limited back reflection. The evaporative heat transfer between the water surface and the glass cover produces the distillate by means of film type condensation at the inner surface of the glass cover. In order to enhance evaporation/condensation phase changes, active solar stills were introduced. In these last, saline water is circulated and put in contact with a heat source which supplies heat to the saline water. With this extra energy, the distillate productivity is increased. In this work, heat supply is assumed to be controlled such that the temperature at the inlet of the still can be adjusted through regulation of the circulating heat transfer fluid rate. Using a modelling based on uniform temperature in each still component, a set of ordinary differential equations was derived. The input variables comprised heat transfer fluid rate, inlet temperature as well as sea water rate and basin depth. Extensive parametric studies were performed after that and optimization of the distilled water yield and rate was discussed.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
David MacPhee ◽  
Ibrahim Dincer

The solidification and melting processes in a spherical geometry are investigated in this study. The capsules considered are filled with de-ionized water, so that a network of spheres can be thought of as being the storage medium for an encapsulated ice storage module. ANSYS GAMBIT and FLUENT 6.0 packages are used to employ the present model for heat transfer fluid (HTF) past a row of such capsules, while varying the HTF inlet temperature and flow rate, as well as the reference temperatures. The present model agrees well with experimental data taken from literature and was also put through rigorous time and grid independence tests. Sufficient flow parameters are studied so that the resulting solidification and melting times, exergy and energy efficiencies, and exergy destruction could be calculated. All energy efficiencies are found to be over 99%, though viscous dissipation was included. Using exergy analysis, the exergetic efficiencies are determined to be about 75% to over 92%, depending on the HTF scenario. When the HTF flow rate is increased, all efficiencies decrease, due mainly to increasing heat losses and exergy dissipation. The HTF temperatures, which stray farther from the solidification temperature of water, are found to be most optimal exergetically, but least optimal energetically. The main reason for this, as well as the main mode of loss exergetically, is due to entropy generation accompanying heat transfer, which is responsible for over 99.5% of exergy destroyed in all cases. The results indicate that viewing the heat transfer and fluid flow phenomena in a bed of encapsulated spheres, it is of utmost importance to assess the major modes of entropy generation; in this case from heat transfer accompanying phase change.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Sarada Kuravi ◽  
Krishna M. Kota ◽  
Jianhua Du ◽  
Louis C. Chow

Microchannels are used in applications where large amount of heat is produced. Phase change material (PCM) slurries can be used as a heat transfer fluid in microchannels as they provide increased heat capacity during the melting of phase change material. For the present numerical investigation, performance of a nano-encapsulated phase change material slurry in a manifold microchannel heat sink was analyzed. The slurry was modeled as a bulk fluid with varying specific heat. The temperature field inside the channel wall is solved three dimensionally and is coupled with the three dimensional velocity and temperature fields of the fluid. The model includes the microchannel fin or wall effect, axial conduction along the length of the channel, developing flow of the fluid and not all these features were included in previous numerical investigations. Influence of parameters such as particle concentration, inlet temperature, melting range of the PCM, and heat flux is investigated, and the results are compared with the pure single phase fluid.


Author(s):  
Jiwon Yu ◽  
Seok-won Kang ◽  
Saeil Jeon ◽  
Debjyoti Banerjee

Forced convective heat transfer experiments were performed for internal flow of de-ionized water (DIW) and aqueous nanofluids (ANF) in microchannels that were integrated with a calorimeter apparatus and an array of temperature nanosensors. The heat flux and wall temperature distribution was measured for the different test fluids as a function of fluid inlet temperature, wall temperature, heat flux, nanoparticles concentration, nanoparticle materials (composition, nanoparticle size and shape) and flow rates. Anomalous behavior of the nanofluids in convective heat transfer was observed where the heat flux varied as a function of flow rate and bulk temperature. The heat exchanging surfaces were characterized using electron microscopy (SEM, TEM) to monitor the change in surface characteristics both before and after the experiments. Precipitation of nanoparticles on the walls of the microchannels can lead to the formation of “nano-fins” at low concentrations of the nanoparticles while more rampant precipitation at high concentration of the nanoparticles in the nanofluids can lead to scaling (fouling) of the microchannel surfaces leading to degradation of convective heat transfer — compared to that of pure water under the same experimental conditions. Also, competing effects resulting from the decrease in the specific heat capacity as well as anomalous enhancement in the thermal conductivity of aqueous nanofluids can lead to counter-intuitive behavior of these test liquids during forced convective heat transfer.


2017 ◽  
Vol 69 (3) ◽  
pp. 363-370 ◽  
Author(s):  
Raja Izamshah Raja Abdullah ◽  
Bahrin Ikram Redzuwan ◽  
Mohd Sanusi Abdul Aziz ◽  
Mohd Shahir Kasim

Purpose The purpose of this study was to compare machining performance between chemical vapor deposition (CVD)- and physical vapor deposition (PVD)-coated cutting tools to obtain the optimal cutting parameters based on different types of tools for machining titanium alloy (Ti-6Al-4V). Design/methodology/approach The design of the experiment was constructed using the response surface methodology (RSM) with the Box–Behnken method. Two types of round-shaped tungsten carbide inserts were used in this experiment, namely, PVD TiAlN/AlCrN insert tool and CVD TiCN/Al2O3 insert tool. The titanium alloy (Ti-6Al-4V) material was used throughout this experiment. The tool wear and microstructure analysis were measured using a tool maker microscope, an optical microscope and a scanning electron machine. Findings The PVD TiAlN/AlCrN insert tool produces the lowest tool wear that significantly prolongs the cutting tool life compared to the CVD TiCN/Al2O3 insert tool. In addition, depth of cut was the main factor affecting the tool life, followed by cutting speed and feed rate. Originality/value This study was conducted to compare machining performance between CVD- and PVD-coated cutting tools to obtain the optimal cutting parameters based on different types of tools for machining titanium alloy (Ti-6Al-4V). In addition, the information presented in this paper helps reduce the manufacturing cost and setup time for machining titanium alloy. Finally, tool wear comparison between PVD- and CVD-coated titanium alloys was also presented for future improvement for tool manufacturing application.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Muhammad Sajid Khan ◽  
Muhammad Abid ◽  
Khuram Pervez Amber ◽  
Hafiz Muhammad Ali ◽  
Mi Yan ◽  
...  

Parabolic dish solar collectors gain higher solar to thermal conversion efficiency due to their maximum concentration ratio. The present research focuses by integrating the parabolic dish solar collector to the steam cycle producing power and rate of process heating. Pressurized water, therminol VP1, and supercritical carbon dioxide are the examined working fluids in the parabolic dish solar collector. The aim of the current research is to observe the optimal operating conditions for each heat transfer fluid by varying inlet temperature and flow rate of the working fluid in the parabolic dish solar collector, and combination of these parameters is predicted to lead to the maximum energy and exergy efficiencies of the collector. The operating parameters are varied to investigate the overall system efficiencies, work output, and process heating rate. Findings of the study declare that water is an efficient heat transfer fluid at low temperature levels, whereas therminol VP1 is effective for a higher temperature range. The integrated system efficiencies are higher at maximum flow rates and low inlet temperatures. The efficiency map of solar collector is located at the end of study, and it shows that maximum exergy efficiency gains at inlet temperature of 750 K and it is observed to be 37.75%.


Sign in / Sign up

Export Citation Format

Share Document